A SARIMA APPROACH WITH PARAMETER OPTIMIZATION FOR ENHANCING FORECAST ACCURACY FOR NATIVE CHICKEN EGG PRODUCTION

Keywords: Forecasting, Parameter tuning, SARIMA

Abstract

This study aims to accurately forecast monthly native chicken egg production using the Seasonal Autoregressive Integrated Moving Average (SARIMA) model with parameter optimization. The optimization process was conducted through a combination of auto.arima() initialization and an exhaustive grid search across the parameter space, evaluated using multiple performance metrics. The dataset comprised monthly production data from Magelang City, Indonesia, spanning the period from 2016 to 2022. The best-performing model, SARIMA (2,1,2)(1,0,1,12), achieved an R² of 0.89, MAE of 82.13, RMSE of 92.92,  MAPE of 7.21%, and MASE of 0.67 on the testing set, indicating satisfactory forecasting performance. Compared with the non-optimized SARIMA baseline, the optimized model showed improved predictive accuracy. However, the residuals did not follow a normal distribution, suggesting potential limitations in model assumptions. Moreover, the study is limited by its focus on a single geographic location and native chicken production data, which may restrict its generalizability. Despite these limitations, the findings demonstrate that parameter optimization in SARIMA enhances forecast accuracy and can support better planning for food security initiatives.

Downloads

Download data is not yet available.

Author Biography

Shinta Puspasari, Faculty of Computer and Natural Science, Universitas Indo Global Mandiri, Indonesia

Faculty of Computer and Science

References

N. Bumanis, A. Kviesis, L. Paura, I. Arhipova, and M. Adjutovs, “HEN EGG PRODUCTION FORECASTING: CAPABILITIES OF MACHINE LEARNING MODELS IN SCENARIOS WITH LIMITED DATA SETS,” Applied Sciences, vol. 13, no. 7607, pp. 1–13, Jun. 2023. doi: https://doi.org/10.3390/app13137607.

H. Faraji-Arough, M. Ghazaghi, and M. Rokouei, “MATHEMATICAL MODELING OF EGG PRODUCTION CURVE IN KHAZAK INDIGENOUS HENS,” Poultry Science Journal, vol. 11, no. 1, pp. 73–81, 2023. doi: https://doi.org/10.22069/psj.2022.20251.1820.

A. Masykur, E. Purwanti, N. Widyas, S. Prastowo, and A. Ratriyanto, “NON-LINEAR PREDICTION MODEL FOR EGG PRODUCTION OF QUAILS IN THE TROPICS WITH METHIONINE SUPPLEMENTATION,” IOP Conference Series: Earth and Environmental Science, vol. 902, no. 1, pp. 1–5, Nov. 2021. doi: https://doi.org/10.1088/1755-1315/902/1/012019.

R. P. Salgado et al., “PREDICTION OF EGG WEIGHT FROM EXTERNAL EGG TRAITS OF GUINEA FOWL USING MULTIPLE LINEAR REGRESSION AND REGRESSION TREE METHODS,” Brazilian Journal of Poultry Science, vol. 23, no. 3, pp. 1–6, 2021. doi: https://doi.org/10.1590/1806-9061-2020-1350.

A. S. Aliqiarloo et al., “ARTIFICIAL NEURAL NETWORK AND NON-LINEAR LOGISTIC REGRESSION MODELS TO FIT THE EGG PRODUCTION CURVE IN COMMERCIAL-TYPE BROILER BREEDERS,” European Poultry Science (EPS), vol. 81, pp. 1–17, Dec. 2017. doi: https://doi.org/10.1399/eps.2017.212.

H. A. Ahmad, “EGG PRODUCTION FORECASTING: DETERMINING EFFICIENT MODELING APPROACHES,” Journal of Applied Poultry Research, vol. 20, no. 4, pp. 463–473, Dec. 2011. doi: https://doi.org/10.3382/japr.2010-00266.

Ö. Görgülü and A. Akilli, “EGG PRODUCTION CURVE FITTING USING LEAST SQUARE SUPPORT VECTOR MACHINES AND NONLINEAR REGRESSION ANALYSIS,” European Poultry Science (EPS), vol. 82, pp. 1–14, May 2018. doi: https://doi.org/10.1399/eps.2018.235.

A. I. Kurnadipare, S. Amaliya, K. A. Notodiputro, Y. Angraini, and L. N. A. Mualifah, “COMPARING FORECASTS OF AGRICULTURAL SECTOR EXPORT VALUES USING SARIMA AND LONG SHORT-TERM MEMORY MODELS,” BAREKENG: Jurnal Ilmu Matematika dan Terapan, vol. 19, no. 1, pp. 385–396, Jan. 2025. doi: https://doi.org/10.30598/barekengvol19iss1pp385-396.

W. A. Pratiwi, A. F. Rizki, K. A. Notodiputro, Y. Angraini, and L. N. A. Mualifah, “THE COMPARISON OF ARIMA AND RNN FOR FORECASTING GOLD FUTURES CLOSING PRICES,” BAREKENG: Jurnal Ilmu Matematika dan Terapan, vol. 19, no. 1, pp. 397–406, Jan. 2025. doi: https://doi.org/10.30598/barekengvol19iss1pp397-406.

T. G. Omomule, O. O. Ajayi, and A. O. Orogun, “FUZZY PREDICTION AND PATTERN ANALYSIS OF POULTRY EGG PRODUCTION,” Computers and Electronics in Agriculture, vol. 171, no. 13, pp. 1–9, Apr. 2020. doi: https://doi.org/10.1016/j.compag.2020.105301.

M. A. Sharifi, C. S. Patil, A. S. Yadav, and Y. C. Bangar, “MATHEMATICAL MODELING FOR EGG PRODUCTION AND EGG WEIGHT CURVES IN A SYNTHETIC WHITE LEGHORN,” Poultry Science, vol. 101, no. 4, pp. 1–6, Apr. 2022. doi: https://doi.org/10.1016/j.psj.2022.101766.

T. H. Noor, A. M. Almars, M. Alwateer, M. Almaliki, I. Gad, and E.-S. Atlam, “SARIMA: A SEASONAL AUTOREGRESSIVE INTEGRATED MOVING AVERAGE MODEL FOR CRIME ANALYSIS IN SAUDI ARABIA,” Electronics, vol. 11, no. 23, pp. 1–14, Dec. 2022. doi:https:/doi.org/10.3390/electronics11233986.

M. Á. Reyes-Radilla, G. H. Terrazas-González, J. M. Romero-Padilla, B. Ramírez-Valverde, and J. Suárez-Espinosa, “EVALUATING TIME SERIES PREDICTION MODELS: EGG PRICES IN MEXICO,” Agrociencia, vol. 1, pp. 1–18, Mar. 2024. doi: https://doi.org/10.47163/agrociencia.v58i2.3023.

A. Saputra, R. Gustriansyah, A. Sanmorino, Z. R. Mair, D. Sartika, and S. Puspasari, “PREDICTION PASSENGER NUMBERS IN LIGHT RAIL TRANSIT USING SEASONAL AUTOREGRESSIVE INTEGRATED MOVING AVERAGE (SARIMA),” PRZEGLĄD ELEKTROTECHNICZNY, vol. 1, no. 10, pp. 45–47, Oct. 2024. doi: https://doi.org/10.15199/48.2024.10.07.

M. Fars et al., “PARALLEL GENETIC ALGORITHMS FOR OPTIMIZING THE SARIMA MODEL FOR BETTER FORECASTING OF THE NCDC WEATHER DATA,” Alexandria Engineering Journal, vol. 60, no. 1, pp. 1299–1316, Feb. 2021. doi: https://doi.org/10.1016/j.aej.2020.10.052.

R. Gustriansyah, J. Alie, and N. Suhandi, “MODELING THE NUMBER OF UNEMPLOYED IN SOUTH SUMATRA PROVINCE USING THE EXPONENTIAL SMOOTHING METHODS,” Quality & Quantity, vol. 57, no. 2, pp. 1725–1737, Jun. 2023. doi: https://doi.org/10.1007/s11135-022-01445-2.

R. Yulianti, N. T. Amanda, K. A. Notodiputro, Y. Angraini, and L. N. A. Mualifah, “COMPARISON OF SARIMA AND SARIMAX METHODS FOR FORECASTING HARVESTED DRY GRAIN PRICES IN INDONESIA,” BAREKENG: Jurnal Ilmu Matematika dan Terapan, vol. 19, no. 1, pp. 319–330, Jan. 2025. doi: https://doi.org/10.30598/barekengvol19iss1pp319-330.

H. T. Hue, J. L. Ng, Y. F. Huang, and Y. X. Tan, “EVALUATION OF TEMPORAL VARIABILITY AND STATIONARITY OF POTENTIAL EVAPOTRANSPIRATION IN PENINSULAR MALAYSIA,” Water Supply, vol. 22, no. 2, pp. 1360–1374, Feb. 2022. doi: https://doi.org/10.2166/ws.2021.343.

R. A. Farghali, H. M. Abd-Elgaber, and E. A. Ahmed, “IDENTIFYING AND ESTIMATING SEASONAL MOVING AVERAGE MODELS BY MATHEMATICAL PROGRAMMING,” Mathematics and Statistics, vol. 11, no. 6, pp. 883–894, Nov. 2023. doi: https://doi.org/10.13189/ms.2023.110603.

C. M. Jarque, “JARQUE-BERA TEST,” in International Encyclopedia of Statistical Science, Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 701–702. doi: https://doi.org/10.1007/978-3-642-04898-2_319.

R. R. Wilcox, INTRODUCTION TO ROBUST ESTIMATION AND HYPOTHESIS TESTING. Elsevier, 2021. doi: https://doi.org/10.1016/C2019-0-01225-3.

R. Gustriansyah, N. Suhandi, F. Antony, and A. Sanmorino, “SINGLE EXPONENTIAL SMOOTHING METHOD TO PREDICT SALES MULTIPLE PRODUCTS,” Journal of Physics: Conference Series, vol. 1175, no. 1, pp. 1–7, 2019. doi: https://doi.org/10.1088/1742-6596/1175/1/012036.

K. Takeuchi, “ON THE PROBLEM OF MODEL SELECTION BASED ON THE DATA,” in Contributions on Theory of Mathematical Statistics, Tokyo: Springer Japan, 2020, pp. 329–356. doi: https://doi.org/10.1007/978-4-431-55239-0_12.

J. Karch, “IMPROVING ON ADJUSTED R-SQUARED,” Collabra: Psychology, vol. 6, no. 1, pp. 1–11, Jan. 2020. doi: https://doi.org/10.1525/collabra.343.

Published
2026-01-26
How to Cite
[1]
R. Gustriansyah, D. A. Dewi, S. Puspasari, and A. Sanmorino, “A SARIMA APPROACH WITH PARAMETER OPTIMIZATION FOR ENHANCING FORECAST ACCURACY FOR NATIVE CHICKEN EGG PRODUCTION”, BAREKENG: J. Math. & App., vol. 20, no. 2, pp. 1331–1344, Jan. 2026.