A COMPARATIVE EVALUATION OF SARIMA AND FUZZY TIME SERIES CHEN MODELS FOR RAINFALL FORECASTING IN MAKASSAR
Abstract
High rainfall intensity in Makassar often leads to flooding. Therefore, forecasting the amount of rainfall is necessary as a reference for taking appropriate mitigation measures. This study was conducted to select the best model between the SARIMA and Fuzzy Time Series (FTS) Chen based on a comparison of their forecasting accuracy, as well as to forecast the amount of rainfall in Makassar for 2024 using the best model. For this study, monthly rainfall data covering the period from January 2014 to December 2024 were collected from the official website of the Central Statistics Agency (BPS) Makassar. Based on the analysis results, SARIMA(7,2,3)(1,1,1)12 was selected as the best model, with an MAE value of 2.654 and an RMSE value of 3.846. The contribution of this study lies in providing an empirical comparison between SARIMA and FTS Chen for rainfall forecasting in tropical regions. However, the limitation of this study is that the forecasting relies solely on historical rainfall data, without incorporating other meteorological variables that may influence rainfall patterns.
Downloads
References
D. Ruhiat, “IMPLEMENTASI DISTRIBUSI PELUANG GUMBEL UNTUK ANALISIS DATA CURAH HUJAN RENCANA,” Teorema Teor. dan Ris. Mat., vol. 7, no. 1, p. 213, 2022. doi: https://doi.org/10.25157/teorema.v7i1.7137.
M. Ariska, Suhadi, Supari, M. Irfan, and I. Iskandar, “SPATIO-TEMPORAL VARIATIONS OF INDONESIAN RAINFALL AND THEIR LINKS TO INDO-PACIFIC MODES,” Atmosphere (Basel), vol. 15, no. 9, p. 1036, 2024. doi: https://doi.org/10.3390/atmos15091036.
I. Ismayanti and A. M. A. Aljurida, “URGENCY IN URBAN FLOOD DISASTER MITIGATION: RESPONSE AND POLICY INITIATION BY MAKASSAR CITY GOVERNMENT,” J. Gov. Local Polit., vol. 5, no. 2, pp. 155–163, 2023. doi: https://doi.org/10.47650/jglp.v5i2.954.
T. Detikcom, “BANJIR TERPARAH DI MAKASSAR RENDAM 3.046 RUMAH, INI 5 FAKTA TERKINI,” news.detik.com, 2022. https://news.detik.com/berita/d-6481579/banjir-terparah-di-makassar-rendam-3-046-rumah-ini-5-fakta-terkini/2 (accessed 1 November 2024).
R. Garg, S. Barpanda, G. R. S. N. S, and R. S, “MACHINE LEARNING ALGORITHMS FOR TIME SERIES ANALYSIS AND FORECASTING,” 2022, [Online]. Available: http://arxiv.org/abs/2211.14387
P. A. Damor, B. Ram, and A. N. Kunapara, “STOCHASTIC TIME SERIES ANALYSIS, MODELING, AND FORECASTING OF WEEKLY RAINFALL USING SARIMA MODEL,” Int. J. Environ. Clim. Chang., vol. 13, no. 12, pp. 773–782, 2023. doi: https://doi.org/10.9734/ijecc/2023/v13i123740.
R. M. Pattanayak, M. V. Sangameswar, D. Vodnala, and H. Das, “FUZZY TIME SERIES FORECASTING APPROACH USING LSTM MODEL,” Comput. y Sist., vol. 26, no. 1, pp. 485–492, 2022. doi: https://doi.org/10.13053/CyS-26-1-4192.
G. Dudek, P. Pelka, and S. Smyl, “A HYBRID RESIDUAL DILATED LSTM AND EXPONENTIAL SMOOTHING MODEL FOR MIDTERM ELECTRIC LOAD FORECASTING,” IEEE Trans. Neural Networks Learn. Syst., vol. 33, no. 7, pp. 2879–2891, 2022. doi: https://doi.org/10.1109/TNNLS.2020.3046629.
B. G. Prianda and E. Widodo, “PERBANDINGAN METODE SEASONAL ARIMA DAN EXTREME LEARNING MACHINE PADA PERAMALAN JUMLAH WISATAWAN MANCANEGARA KE BALI,” BAREKENG J. Ilmu Mat. dan Terap., vol. 15, no. 4, pp. 639–650, 2021. doi: https://doi.org/10.30598/barekengvol15iss4pp639-650.
A. S. Aliyu, A. M. Auwal, and M. O. Adenomon, “APPLICATION OF SARIMA MODELS IN MODELLING AND FORECASTING MONTHLY RAINFALL IN NIGERIA,” Asian J. Probab. Stat., vol. 13, no. 3, pp. 30–43, 2021. doi: https://doi.org/10.9734/ajpas/2021/v13i330310.
V. S. Yavuz, “FORECASTING MONTHLY RAINFALL AND TEMPERATURE PATTERNS IN VAN PROVINCE, TÜRKIYE, USING ARIMA AND SARIMA MODELS: A LONG-TERM CLIMATE ANALYSIS,” J. Water Clim. Chang., vol. 16, no. 2, pp. 800–818, 2025. doi: https://doi.org/10.2166/wcc.2025.798.
S. Hoque and M. A. Islam, “FORECASTING OF MONTHLY RAINFALL IN CUMILLA OF BANGLADESH, USING SARIMA MODEL,” Ijmcr, vol. 09, no. 02, pp. 2187–2192, 2021. doi: https://doi.org/10.47191/ijmcr/v9i2.02.
R. A. M. Yusuf and T. S. Yanti, “PERBANDINGAN METODE SEASONAL AUTOREGRESSIVE INTEGRETED MOVING AVERAGE (SARIMA) DAN METODE FUZZY TIME SERIES UNTUK MODEL PERAMALAN JUMLAH WISATAWAN MANCANEGARA DI BALI,” Pros. Stat., vol. 7, no. 2, pp. 597–605, 2021, [Online]. Available: http://dx.doi.org/10.29313/.v0i0.29204.
D. A. Sari, W. P. Nurmayanti, and K. Nah, “PERBANDINGAN METODE FUZZY TIME SERIES MODEL CHEN, LEE, DAN SINGH PADA PRODUKSI TOMAT DI NUSA TENGGARA BARAT,” Pros. Semin. Nas. Mat. Stat. dan Apl., vol. 3, no. 01, pp. 231–253, 2023.
A. R. Pratama and Firdaus, “PERBANDINGAN METODE ARIMA DENGAN FUZZY TIME SERIES MODEL CHEN PADA PERAMALAN CURAH HUJAN DI KOTA BENGKULU,” J. Math-UMB.EDU, vol. 11, no. 3, pp. 154–166, 2024. doi: https://doi.org/10.36085/mathumbedu.v11i3.6480.
E. Vianita, R. H. Tjahjana, and T. Udjiani, “FUZZY TIME SERIES ORDE TINGGI BERDASARKAN MEDIAN RASIO INTERVAL,” J. Mat. UNAND, vol. 11, no. 1, p. 53, 2022. doi: https://doi.org/10.25077/jmu.11.1.53-63.2022.
A. S. N. Sari and E. P. Setiawan, “COMPARISON OF FUZZY TIME SERIES LEE, CHEN, AND SINGH ON FORECASTING FOREIGN TOURIST ARRIVALS TO INDONESIA IN 2023,” vol. 21, no. 1, pp. 10–32, 2024. doi: https://doi.org/10.20956/j.v21i1.34914.
S. Zikri and W. R. Hasibuan, “RAINFALL PREDICTION ANALYSIS USING THE FUZZY TIME SERIES METHOD IN MEDAN CITY,” J. Artif. Intell. Eng. Appl., vol. 4, no. 1, pp. 575–579, 2024. doi: https://doi.org/10.59934/jaiea.v4i1.685.
Arnita, N. Afnisah, and F. Marpaung, “A COMPARISON OF THE FUZZY TIME SERIES METHODS OF CHEN, CHENG, AND MARKOV CHAIN IN PREDICTING RAINFALL IN MEDAN,” J. Phys. Conf. Ser., vol. 1462, no. 1, 2020. doi: https://doi.org/10.1088/1742-6596/1462/1/012044.
R Core Team, “R: A LANGUAGE AND ENVIRONMENT FOR STATISTICAL COMPUTING.” R Foundation for Statistical Computing, Vienna, Austria, 2024. [Online]. Available: https://www.r-project.org/
R. Hyndman et al., “FORECAST: FORECASTING FUNCTIONS FOR TIME SERIES AND LINEAR MODELS.” 2024. [Online]. Available: https://pkg.robjhyndman.com/forecast/
H. T. T. Ngoc, D. H. Nghi, M. T. H. Diem, N. T. D. My, H. V. Minh, V. T. Van, “ANALYZETS: ANALYZE FUZZY TIME SERIES.” 2019. [Online]. Available: https://cran.r-project.org/package=AnalyzeTS
A. Trapletti, K. Hornik, “TSERIES: TIME SERIES ANALYSIS AND COMPUTATIONAL FINANCE.” 2023. [Online]. Available: https://cran.r-project.org/package=tseries
D. Stoffer, N. Poison, “ASTSA: APPLIED STATISTICAL TIME SERIES ANALYSIS.” 2024. [Online]. Available: https://cran.r-project.org/package=astsa
H. Wickham, GGPLOT2: ELEGANT GRAPHICS FOR DATA ANALYSIS. Springer-Verlag New York, 2016. [Online]. Available: https://ggplot2.tidyverse.org
F. Rachim, T. Tarno, and S. Sugito, “PERBANDINGAN FUZZY TIME SERIES DENGAN METODE CHEN DAN METODE S. R. SINGH (STUDI KASUS : NILAI IMPOR DI JAWA TENGAH PERIODE JANUARI 2014 – DESEMBER 2019),” J. Gaussian, vol. 9, no. 3, pp. 306–315, 2020. doi: https://doi.org/10.14710/j.gauss.v9i3.28912.
K. Kurniawan, B. Ceasaro, S. Sucipto, “PERBANDINGAN FUNGSI AKTIVASI UNTUK MENINGKATKAN KINERJA MODEL LSTM DALAM PREDIKSI KETINGGIAN AIR SUNGAI,” vol. 10, no. 1, pp. 134–143, 2024. doi: https://doi.org/10.26418/jp.v10i1.72866.
N. D. Achmad, A. M. Soleh, and A. Rizki, “PERBANDINGAN PENGKLASIFIKASIAN METODE SUPPORT VECTOR MACHINE DAN RANDOM FOREST (KASUS PERUSAHAAN KEBUN KELAPA SAWIT),” Xplore J. Stat., vol. 11, no. 2, pp. 147–156, 2022. doi: https://doi.org/10.29244/xplore.v11i2.919.
D. D. Noel et al., “NORMALITY ASSESSMENT OF SEVERAL QUANTITATIVE DATA TRANSFORMATION PROCEDURES,” Biostat. Biometrics Open Access J., vol. 10, no. 3, 2021. doi: https://doi.org/10.19080/bboaj.2021.10.555786.
Rahmadani, Mardiningsih, E. Rosmaini, P. K. Nasution, “KAJIAN METODE FUZZY TIME SERIES-CHEN DAN FUZZY TIME SERIES-MARKOV CHAIN DAN TERAPAN PADA PERAMALAN CURAH HUJAN,” J. Math. Educ. Sci., vol. 10, no. 1, 2024.
Copyright (c) 2026 Gavrilla Claudia, Atika Ratna Dewi, Aina Latifa Riyana Putri

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this Journal agree to the following terms:
- Author retain copyright and grant the journal right of first publication with the work simultaneously licensed under a creative commons attribution license that allow others to share the work within an acknowledgement of the work’s authorship and initial publication of this journal.
- Authors are able to enter into separate, additional contractual arrangement for the non-exclusive distribution of the journal’s published version of the work (e.g. acknowledgement of its initial publication in this journal).
- Authors are permitted and encouraged to post their work online (e.g. in institutional repositories or on their websites) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published works.




1.gif)


