OPTIMIZATION OF ARIMA RESIDUALS USING LSTM IN STOCK PRICE PREDICTION OF PT MEDCO ENERGI INTERNASIONAL TBK
Abstract
The capital market plays an important role in the economy by providing a means for companies to obtain capital and as a place to invest. Stocks are one of the popular investment instruments because their potential profits are attractive to investors. The stocks used in this study are PT Medco Energi Internasional Tbk (MEDC) shares. The purpose of this study is to obtain the optimal ARIMA-LSTM residual optimization model, how much the accuracy, and to predict Medco stock prices for the next 8-month period. The data used starts from January 4, 2021, to October 31, 2024, was obtained from the yahoofinance.com website. The ARIMA model, which is known to be effective in handling linear data, will be combined with LSTM. The use of residuals in the LSTM model can help LSTM capture patterns in the entire stock data so as to increase prediction accuracy. The research results obtained are the optimal ARIMA-LSTM optimization model, namely, ARIMA ([5,9],1,[5,9,11]) and LSTM with the best hyperparameter, namely, hidden layer 64, batch size 16, and learning rate 0.01. The accuracy of the ARIMA-LSTM optimization model is classified as very accurate, with a MAPE value of 0.3%. Medco Energi’s stock price for the next 8-month period is predicted to increase from IDR1312 to IDR1430 or an increase of 9%.
Downloads
References
F. Al-Fadhat, “BIG BUSINESS CAPITAL EXPANSION AND THE SHIFT OF INDONESIA’S GLOBAL ECONOMIC POLICY OUTLOOK,” East Asia, vol. 39, no. 4, pp. 389–406, 2022. doi: https://doi.org/10.1007/s12140-022-09384-3.
KSEI, “LAPORAN JUMLAH INVESTOR PADA PASAR MODAL INDONESIA BULAN AGUSTUS 2024.” Accessed: Feb. 12, 2025. [Online]. Available: https://www.ksei.co.id/files/uploads/press_releases/press_file/id-id/242_berita_pers_membangun_pasar_modal_yang_terpercaya_dan_inklusif_menuju_indonesia_emas_20240815105840.pdf
B. E. Indonesia, “14 MILLION CAPITAL MARKET INVESTORS: SYNERGY, DIGITAL INNOVATION, AND INCLUSIVE ACCESS TO INFORMATION.” Accessed: Feb. 15, 2025. [Online]. Available: https://www.idx.co.id/en/news/press-release/2234
T. Semenova and A. Al-Dirawi, “ECONOMIC DEVELOPMENT OF THE IRAQI GAS SECTOR IN CONJUNCTION WITH THE OIL INDUSTRY,” Energies, vol. 15, no. 7, 2022. doi: https://doi.org/10.3390/en15072306.
Medco, “PROFIL PERUSAHAAN PT MEDCO ENERGI INTERNASIONAL TBK.” Accessed: Feb. 12, 2025. [Online]. Available: https://www.medcoenergi.com/id/page/view/245
C. C. Wu, Y. Yan, T. Yuan, C. C. Huang, and Y. J. Tsai, “A STUDY OF NETWORK NEGATIVE NEWS BASED ON BEHAVIORAL FINANCE ANALYSIS OF ABNORMAL FLUCTUATION OF STOCK PRICE,” Discret. Dyn. Nat. Soc., vol. 2022, 2022. doi: https://doi.org/10.1155/2022/7952532.
J. Sen and S. Mehtab, “A TIME SERIES ANALYSIS-BASED STOCK PRICE PREDICTION USING MACHINE LEARNING AND DEEP LEARNING MODELS,” Int. J. Bus. Forecast. Mark. Intell., vol. 6, no. 1, p. 272, 2021. doi: https://doi.org/10.1504/ijbfmi.2020.10038524.
A. Mappadang, “MACROECONOMIC, CORPORATE FUNDAMENTALS, SYSTEMATIC RISK ON FIRM VALUE: EVIDENCE FROM INDONESIAN MANUFACTURING SECTOR,” J. Keuang. dan Perbank., vol. 25, no. 4, pp. 836–854, 2021. doi: https://doi.org/10.26905/jkdp.v25i4.5769.
A. L. Schaffer, T. A. Dobbins, and Sallie-Anne, “INTERRUPTED TIME SERIES ANALYSIS USING AUTOREGRESSIVE INTEGRATED MOVING AVERAGE (ARIMA) MODELS: A GUIDE FOR EVALUATING LARGE-SCALE HEALTH INTERVENTIONS,” J. BMC Med. Res. Methodol., vol. 21, pp. 1–12, 2021. doi: https://doi.org/10.1111/jmwh.13601.
E. B. Sinu, M. A. Kleden, and A. Atti, “APPLICATION OF ARIMA MODEL FOR FORECASTING NATIONAL ECONOMIC GROWTH: A FOCUS ON GROSS DOMESTIC PRODUCT DATA,” BAREKENG J. Ilmu Mat. dan Terap., vol. 18, no. 2, pp. 1261–1272, 2024. doi: https://doi.org/10.30598/barekengvol18iss2pp1261-1272.
P. Chhajer, M. Shah, and A. Kshirsagar, “THE APPLICATIONS OF ARTIFICIAL NEURAL NETWORKS, SUPPORT VECTOR MACHINES, AND LONG–SHORT TERM MEMORY FOR STOCK MARKET PREDICTION,” Decis. Anal. J., vol. 2, no. November 2021, p. 100015, 2022. doi: https://doi.org/10.1016/j.dajour.2021.100015.
Darussalam and G. Arief, “RICE PRICE PREDICTION WITH LONG SHORT-TERM MEMORY (LSTM) NEURAL NETWORK,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 8, no. 5, pp. 658–664, 2024. doi: https://doi.org/10.29207/resti.v8i5.6041.
Z. S. Khozani, F. B. Banadkooki, M. Ehteram, A. N. Ahmed, and A. El-Shafie, “COMBINING AUTOREGRESSIVE INTEGRATED MOVING AVERAGE WITH LONG SHORT-TERM MEMORY NEURAL NETWORK AND OPTIMISATION ALGORITHMS FOR PREDICTING GROUND WATER LEVEL,” J. Clean. Prod., vol. 348, pp. 131–224, 2022. doi: https://doi.org/10.1016/j.jclepro.2022.131224.
Brahmanapalli Kalyan, S Parameshwara Reddy, Dr. Krovvidi Krishna Kumari, and Dr. Manish Jain, “COMPARATIVE ANALYSIS OF STOCK PRICE PREDICTION ACCURACY: A MACHINE LEARNING APPROACH WITH ARIMA, LSTM, AND RANDOM FOREST MODELS,” Int. Res. J. Adv. Eng. Hub, vol. 2, no. 05, pp. 1141–1151, 2024. doi: https://doi.org/10.47392/irjaeh.2024.0157.
T. Mashadihasanli, “STOCK MARKET PRICE FORECASTING USING THE ARIMA MODEL: AN APPLICATION TO ISTANBUL, TURKIYE,” J. Econ. Policy Res. / İktisat Polit. Araştırmaları Derg., vol. 9, no. 2, pp. 439–454, 2022. doi: https://doi.org/10.26650/jepr1056771.
O. Shobayo, S. Adeyemi-longe, O. Popoola, and O. Okoyeigbo, “A COMPARATIVE ANALYSIS OF MACHINE LEARNING AND DEEP LEARNING TECHNIQUES FOR ACCURATE MARKET PRICE FORECASTING,” Analytics, vol. 1, 2025. doi: https://doi.org/10.3390/analytics4010005.
C. Ma, J. Wu, H. Hu, Y. N. Chen, and J. Y. Li, “PREDICTING STOCK PRICES USING HYBRID LSTM AND ARIMA MODEL,” IAENG Int. J. Appl. Math., vol. 54, no. 3, pp. 424–432, 2024.
F. Yahoo, “HARGA SAHAM MEDCO ENERGI TAHUN 2021-2024.” [Online]. Available: https://finance.yahoo.com/quote/MEDC.JK/history/
E. Suryatin, M. Hadijati, and Z. Widya Baskara, “HYBRID ARIMA MODELING WITH STOCHASTIC VOLATILITY FOR FORECASTING THE VALUE OF NON-OIL AND GAS EXPORTS IN INDONESIA,” Int. J. Comput. Sci. Appl. Math., vol. 10, no. 1, p. 27, 2024. doi: https://doi.org/10.12962/j24775401.v10i1.20265.
A. Gifty and D. Yang Li, “A COMPARATIVE ANALYSIS OF LSTM, ARIMA, XGBOOST ALGORITHMS IN PREDICTING STOCK PRICE DIRECTION,” Eng. Technol. J., vol. 09, no. 08, pp. 4978–4986, 2024. doi: https://doi.org/10.47191/etj/v9i08.50.
Melina et al., “COMPARATIVE ANALYSIS OF TIME SERIES FORECASTING MODELS USING ARIMA AND NEURAL NETWORK AUTOREGRESSION METHODS,” BAREKENG J. Ilmu Mat. dan Terap., vol. 18, no. 4, pp. 2563–2576, 2024. doi: https://doi.org/10.30598/barekengvol18iss4pp2563-2576.
R. Agustianto, I. Purnamasari, and Suyitno, "ANALYSIS OF WATER SURFACE HEIGHT DATA OF THE MAHAKAM RIVER IN THE KUTAI KARTANEGARA REGION IN 2010-2016 USING THE AUTOREGRESSIVE INTEGRATED MOVING AVERAGE (ARIMA) MODEL WITH OUTLIER EFFECT (CASE STUDY: AVERAGE OF WATER SURFACE HEIGHT DATA OF MAHAKAM RIVER, TENGGARONG, KALIMANTAN TIMUR)", Jurnal Eksponensial, Vol.11, No.1, Mei 2020. pp 39-46. doi: https://doi.org/10.30872/eksponensial.v11i1.643.
I. Mardiyah, W. Dianita Utami, D. C. Rini Novitasari, M. Hafiyusholeh, and D. Sulistiyawati, “ANALISIS PREDIKSI JUMLAH PENDUDUK DI KOTA PASURUAN MENGGUNAKAN METODE ARIMA,” BAREKENG J. Ilmu Mat. dan Terap., vol. 15, no. 3, pp. 525–534, 2021. doi: https://doi.org/10.30598/barekengvol15iss3pp525-534.
F. D. Yuliawanti, D. C. R. Novitasari, N. Widodo, A. Hamid, and W. D. Utami, “PENERAPAN METODE AUTOREGRESSIVE INTEGRATED MOVING AVERAGE (ARIMA) UNTUK PREDIKSI BILANGAN SUNSPOT,” BAREKENG J. Ilmu Mat. dan Terap., vol. 15, no. 3, pp. 555–564, 2021. doi: https://doi.org/10.30598/barekengvol15iss3pp555-564.
P. Kartikasari, H. Yasin, and D. A. I. Maruddani, “AUTOREGRESSIVE FRACTIONAL INTEGRATED MOVING AVERAGE (ARFIMA) MODEL TO PREDICT COVID-19 PANDEMIC CASES IN INDONESIA,” Media Stat., vol. 14, no. 1, pp. 44–55, 2021. doi: https://doi.org/10.14710/medstat.14.1.44-55.
Y. C. Jin, Q. Cao, K. N. Wang, Y. Zhou, Y. P. Cao, and X. Y. Wang, “PREDICTION OF COVID-19 DATA USING IMPROVED ARIMA-LSTM HYBRID FORECAST MODELS,” IEEE Access, vol. 11, pp. 67956–67967, 2023. doi: https://doi.org/10.1109/ACCESS.2023.3291999.
R. Ospina, J. A. M. Gondim, V. Leiva, and C. Castro, “AN OVERVIEW OF FORECAST ANALYSIS WITH ARIMA MODELS DURING THE COVID-19 PANDEMIC: METHODOLOGY AND CASE STUDY IN BRAZIL,” Mathematics, vol. 11, no. 14, pp. 1–18, 2023. doi: https://doi.org/10.3390/math11143069.
M. Ridwan, K. Sadik, and M. Afendi, “COMPARISON OF ARIMA AND GRU MODELS FOR HIGH-FREQUENCY TIME SERIES FORECASTING,” Sci. J. Informatics, vol. 10, no. 3, p. 389, 2023. doi: https://doi.org/10.15294/sji.v10i3.45965.
K. N. Vavliakis, A. Siailis, and A. L. Symeonidis, “OPTIMIZING SALES FORECASTING IN E-COMMERCE WITH ARIMA AND LSTM MODELS,” Int. Conf. Web Inf. Syst. Technol. WEBIST - Proc., vol. 2021-Octob, no. Webist, pp. 299–306, 2021. doi: https://doi.org/10.5220/0010659500003058.
N. Gasim and A. Sciences, “A COMPARATIVE STUDY ON THE FORECASTING PERFORMANCE OF TIME-VARYIG COEFFICIENT MODELS EVIDENCE FROM USD/TRY EXCHANGE RATE,” J. Mod. Technol. Eng., vol. 8, no. 2, pp. 119–139, 2023.
C. Vista Magdalena Sihombing, S. Martha, and A. Miftahul Huda, “ANALISIS METODE HYBRID ARIMA-SVR PADA INDEKS HARGA SAHAM GABUNGAN,” Bul. Ilm. Math. Stat. dan Ter., vol. 11, no. 3, pp. 413–422, 2022. doi: https://doi.org/10.26418/bbimst.v11i3.54618.
H. Khatimah, I. Jaya, and A. S. Atmadipoera, “SIGNIFICANT WAVE HEIGHT FORECASTING USING LONG-SHORT TERM MEMORY (LSTM) IN SERIBU ISLAND WATERS,” IJCCS (Indonesian J. Comput. Cybern. Syst., vol. 18, no. 2, pp. 1–14, 2024. doi: https://doi.org/10.22146/ijccs.95044.
Y.-S. Kim, M. K. Kim, N. Fu, J. Liu, J. Wang, and J. Srebric, “INVESTIGATING THE IMPACT OF DATA NORMALIZATION METHODS ON PREDICTING ELECTRICITY CONSUMPTION IN A BUILDING USING DIFFERENT ARTIFICIAL NEURAL NETWORK MODELS,” Sustain. Cities Soc., vol. 118, no. October 2023, p. 105570, 2024. doi: https://doi.org/10.1016/j.scs.2024.105570.
D. D. Pramesti, D. C. R. Novitasari, F. Setiawan, and H. Khaulasari, “LONG-SHORT TERM MEMORY (LSTM) FOR PREDICTING VELOCITY AND DIRECTION SEA SURFACE CURRENT ON BALI STRAIT,” BAREKENG J. Ilmu Mat. dan Terap., vol. 16, no. 2, pp. 451–462, 2022. doi: https://doi.org/10.30598/barekengvol16iss2pp451-462.
R. A. Dhiya’ulhaq, A. Safira, I. Fahmiyah, and M. Ghani, “OCEAN WAVE PREDICTION USING LONG SHORT-TERM MEMORY (LSTM) AND EXTREME GRADIENT BOOSTING (XGBOOST) IN TUBAN REGENCY FOR FISHERMAN SAFETY,” MethodsX, vol. 13, no. July, p. 103031, 2024. doi: https://doi.org/10.1016/j.mex.2024.103031.
D. A. Anggoro and S. S. Mukti, “PERFORMANCE COMPARISON OF GRID SEARCH AND RANDOM SEARCH METHODS FOR HYPERPARAMETER TUNING IN EXTREME GRADIENT BOOSTING ALGORITHM TO PREDICT CHRONIC KIDNEY FAILURE,” Int. J. Intell. Eng. Syst., vol. 14, no. 6, pp. 198–207, 2021. doi: https://doi.org/10.22266/ijies2021.1231.19.
L. González-Castro, M. Chávez, P. Duflot, V. Bleret, G. Del Fiol, and M. López-Nores, “IMPACT OF HYPERPARAMETER OPTIMIZATION TO ENHANCE MACHINE LEARNING PERFORMANCE: A CASE STUDY ON BREAST CANCER RECURRENCE PREDICTION,” Appl. Sci., vol. 14, no. 13, 2024. doi: https://doi.org/10.3390/app14135909.
R. Sari, K. Kusrini, T. Hidayat, and T. Orphanoudakis, “IMPROVED LSTM METHOD OF PREDICTING CRYPTOCURRENCY PRICE USING SHORT-TERM DATA,” IJCCS (Indonesian J. Comput. Cybern. Syst., vol. 17, no. 1, p. 33, 2023. doi: https://doi.org/10.22146/ijccs.80776.
A. A. Pierre, S. A. Akim, A. K. Semenyo, and B. Babiga, “PEAK ELECTRICAL ENERGY CONSUMPTION PREDICTION BY ARIMA, LSTM, GRU, ARIMA-LSTM AND ARIMA-GRU APPROACHES,” Energies, vol. 16, no. 12, 2023. doi: https://doi.org/10.3390/en16124739.
K. Alkhatib, H. Khazaleh, H. A. Alkhazaleh, A. R. Alsoud, and L. Abualigah, “A NEW STOCK PRICE FORECASTING METHOD USING ACTIVE DEEP LEARNING APPROACH,” J. Open Innov. Technol. Mark. Complex., vol. 8, no. 2, 2022. doi: https://doi.org/10.3390/joitmc8020096.
E. S. Nugraha, Z. Alika, and D. Amir Hamzah, “FORECASTING THE STOCK PRICE OF PT ASTRA INTERNATIONAL USING THE LSTM METHOD,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 8, no. 3, pp. 431–437, 2024. doi: https://doi.org/10.29207/resti.v8i3.5699.
S. Hamiane, Y. Ghanou, H. Khalifi, and M. Telmem, “COMPARATIVE ANALYSIS OF LSTM, ARIMA, AND HYBRID MODELS FOR FORECASTING FUTURE GDP,” Ing. des Syst. d’Information, vol. 29, no. 3, pp. 853–861, 2024. doi: https://doi.org/10.18280/isi.290306.
T. B. Sianturi, I. Cholissodin, and N. Yudistira, “PENERAPAN ALGORITMA LONG SHORT-TERM MEMORY (LSTM) BERBASIS MULTI FUNGSI AKTIVASI TERBOBOT DALAM PREDIKSI HARGA ETHEREUM,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 7, no. 3, pp. 1101–1107, 2023, [Online]. Available: http://j-ptiik.ub.ac.id
M. I. K. Sinapoy, Y. Sibaroni, and S. S. Prasetyowati, “COMPARISON OF LSTM AND INDOBERT METHOD IN IDENTIFYING HOAX ON TWITTER,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 7, no. 3, pp. 657–662, 2023. doi: https://doi.org/10.29207/resti.v7i3.4830.
P. Sugiartawan, Y. E. Saputra, and A. Q. Munir, “CONVOLUTIONAL LONG SHORT-TERM MEMORY (C-LSTM) FOR MULTI PRODUCT PREDICTION,” IJCCS (Indonesian J. Comput. Cybern. Syst., vol. 17, no. 4, p. 417, 2023. doi: https://doi.org/10.22146/ijccs.90149.
F. Oil, G. Export, D. Kurniasari, M. E. Nuraini, and R. K. Nisa, “A CASE STUDY : COMPARISON OF LSTM AND GRU METHODS FOR FORECASTING OIL, NON-OIL, AND GAS EXPORT VALUES IN INDONESIA,” JTI, J. Tek. Inform., vol. 17, no. 2, pp. 127–138, 2024.
W. Wang, B. Ma, G. Xing, C. Yong, and X. Yonghong, “A HYBRID ARIMA-LSTM MODEL FOR SHORT-TERM VEHICLE SPEED PREDICTION,” Energies, vol. 17, no. 15, pp. 1–18, 2024. doi: https://doi.org/10.3390/en17153736.
L. Yu, C. Wu, and N. N. Xiong, “AN INTELLIGENT DATA ANALYSIS SYSTEM COMBINING ARIMA AND LSTM FOR PERSISTENT ORGANIC POLLUTANTS CONCENTRATION PREDICTION,” Electron., vol. 11, no. 4, 2022. doi: https://doi.org/10.3390/electronics11040652.
H. Li, C. Qin, W. He, F. Sun, and P. Du, “IMPROVED PREDICTIVE PERFORMANCE OF CYANOBACTERIAL BLOOMS USING A HYBRID STATISTICAL AND DEEP-LEARNING METHOD,” Environ. Res. Lett., vol. 16, no. 12, 2021. doi: https://doi.org/10.1088/1748-9326/ac302d.
A. Lawi, H. Mesra, and S. Amir, “IMPLEMENTATION OF LONG SHORT-TERM MEMORY AND GATED RECURRENT UNITS ON GROUPED TIME-SERIES DATA TO PREDICT STOCK PRICES ACCURATELY,” J. Big Data, vol. 9, no. 1, 2022. doi: https://doi.org/10.1186/s40537-022-00597-0.
E. Zukhronah, W. Sulandari, S. Subanti, I. Slamet, Sugianto, and I. Susanto, “FORECASTING OF INDONESIAN CRUDE PRICES USING ARIMA AND HYBRID TSR-ARIMA,” vol. 10, no. 2, pp. 64–68, 2024. doi: https://10.12962/Fj24775401.v10i2.21946.
B. Gülmez, “STOCK PRICE PREDICTION WITH OPTIMIZED DEEP LSTM NETWORK WITH ARTIFICIAL RABBITS OPTIMIZATION ALGORITHM,” Expert Syst. Appl., vol. 227, no. April, p. 120346, 2023. doi: https://doi.org/10.1016/j.eswa.2023.120346.
C. S. Sucipto, W. Sulandari, and Y. Susanti, “IMPLEMENTATION OF CROSS-VALIDATION ON HANG SENG INDEX FORECASTING USING HOLT’S EXPONENTIAL SMOOTHING AND AUTO-ARIMA METHOD,” BAREKENG J. Ilmu Mat. dan Terap., vol. 19, no. 1, pp. 13–24, 2025. doi: https://doi.org/10.30598/barekengvol19iss1pp0013-0024.
T. R. Trydini, Helmi, and N. M. Huda, “PREDIKSI HARGA SAHAM MENGGUNAKAN MODEL AUTOREGRESSIVE INTEGRATED MOVING AVERAGE DENGAN INNOVATIONAL OUTLIER,” Bul. Ilm. Math, Stat, dan Ter., vol. 12, no. 1, pp. 1–10, 2023. doi: https://doi.org/10.26418/bbimst.v12i1.61975.
A. Syukur, R. Zega, A. K. Hidayat, and N. T. Jannah, “SELECTING THE BEST MODEL FOR FORECASTING INDONESIA’S OIL AND GAS IMPORT VALUE USING ARIMAX AND ARIMAX-LSTM,” vol. 8, no. 4, pp. 912–941, 2024. doi: https://doi.org/10.31000/dmj.v8i4.
Copyright (c) 2026 Achmad Fachril Yusuf Ababil, Abdulloh Hamid, Hani Khaulasari, Dian Candra Rini Novitasari, Wika Dianita Utami

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this Journal agree to the following terms:
- Author retain copyright and grant the journal right of first publication with the work simultaneously licensed under a creative commons attribution license that allow others to share the work within an acknowledgement of the work’s authorship and initial publication of this journal.
- Authors are able to enter into separate, additional contractual arrangement for the non-exclusive distribution of the journal’s published version of the work (e.g. acknowledgement of its initial publication in this journal).
- Authors are permitted and encouraged to post their work online (e.g. in institutional repositories or on their websites) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published works.




1.gif)


