APPLICATION OF DISCRETE HIDDEN MARKOV MODELS IN ANALYZING BLOOD TYPE INHERITANCE PATTERNS
Abstract
This research investigates the application of a Discrete Hidden Markov Model (DHMM) to analyze inheritance patterns of ABO blood types. Leveraging the DHMM’s ability to model systems with hidden states, the study aims to improve the understanding of blood type inheritance dynamics in populations. The model employs six hidden states representing ABO genotypes (IAIA, IAi, IBIB, IBi, IAIB, and ii) and four observable states corresponding to blood type phenotypes (A, B, AB, and O). The transition and emission matrices followed Mendelian inheritance principles using population allele frequencies, whereas the initial probabilities were computed under Hardy-Weinberg Equilibrium (HWE) assumptions, with parameters calibrated to Indonesian blood type distributions. As a case study, we calculated the likelihood of observing phenotype A across five consecutive generations. Using the forward-backward algorithm, the probability of this sequence was calculated as 19%. The Viterbi algorithm further identified the most probable sequence of hidden genotypes, revealing a transition from the heterozygous IAi to the homozygous IAIA genotype over the five generations. One iteration of the Baum-Welch algorithm improved model accuracy, increasing log-likelihood from -1.661 to 0. Our results demonstrate the DHMM’s efficacy in decoding complex inheritance dynamics and provide a foundation for future population genetics research.
Downloads
References
C. Kim, “HUMAN RED BLOOD CELL (RBC) BLOOD GROUPS SYSTEM,” In: Glycoimmunology in Xenotransplantation, Singapore: Springer, pp. 35–45, 2024, doi: https://doi.org/10.1007/978-981-99-7691-1_6.
S. Hazari, S. Bhavusaheb, P. Santanu, and N. M. Paul, FUNDAMENTALS OF PLANT GENETICS EDITORS. National Press Associates, 2024. [Online]. Available: www.npapublishing.in
M. Franzese and A. Iuliano, “HIDDEN MARKOV MODELS,” Encyclopedia of Bioinformatics and Computational Biology: ABC of Bioinformatics, vol. 1–3, pp. 753–762, Jan. 2019, doi: https://doi.org/10.1016/B978-0-12-809633-8.20488-3.
N. Hayati, B. Setiawaty, and I. Purnaba, “THE APPLICATION OF DISCRETE HIDDEN MARKOV MODEL ON CROSSES OF DIPLOID PLANT,” BAREKENG: Jurnal Ilmu Matematika dan Terapan, vol. 17, no. 3, pp. 1449–1462, 2023, doi: https://doi.org/10.30598/barekengvol17iss3pp1449-1462.
M. Mollinari and A. A. F. Garcia, “LINKAGE ANALYSIS AND HAPLOTYPE PHASING IN EXPERIMENTAL AUTOPOLYPLOID POPULATIONS WITH HIGH PLOIDY LEVEL USING HIDDEN MARKOV MODELS,” G3: Genes, Genomes, Genetics, vol. 9, no. 10, pp. 3297–3314, Oct. 2019, doi: https://doi.org/10.1534/g3.119.400378.
M. Fang, X. Wang, Y. Chen, P. Wang, L. Lu, J. Lu, F. Yao and Y. Zhang., “GENOME SEQUENCE ANALYSIS OF AURICULARIA HEIMUER COMBINED WITH GENETIC LINKAGE MAP,” Journal of Fungi, vol. 6, no. 1, Mar. 2020, doi: https://doi.org/10.3390/jof6010037.
M. Feldgarden, V. Brover, N. G. Escalona, J. G. Frye, J. Haendiges, D. H. Haft, M. Hoffmann, J. B. Pettengill, A. B. Prasad, G. E. Tillman, G. H. Tyson and W,. Klimke., “AMRFINDERPLUS AND THE REFERENCE GENE CATALOG FACILITATE EXAMINATION OF THE GENOMIC LINKS AMONG ANTIMICROBIAL RESISTANCE, STRESS RESPONSE, AND VIRULENCE,” Sci Rep, vol. 11, no. 1, Dec. 2021, doi: https://doi.org/10.1038/s41598-021-91456-0.
M. Sesia, E. Katsevich, S. Bates, E. Candès, and C. Sabatti, “MULTI-RESOLUTION LOCALIZATION OF CAUSAL VARIANTS ACROSS THE GENOME,” Nat Commun, vol. 11, no. 1, Dec. 2020, doi: https://doi.org/10.1038/s41467-020-14791-2.
N. Hayati, E. Sulistyono, and V. Aprilla Handayani, “UTILIZING DISCRETE HIDDEN MARKOV MODELS TO ANALYZE TETRAPLOID PLANT BREEDING,” Jurnal Matematika UNAND, vol. 13, no. 4, pp. 244–256, 2024, doi: https://doi.org/10/25077/jmua.13.4.244-256.2024.
M. Giollo, G. Minervini, M. Scalzotto, E. Leonardi, C. Ferrari, and S. Tosatto, “BOOGIE: PREDICTING BLOOD GROUPS FROM HIGH THROUGHPUT SEQUENCING DATA,” PLoS One, vol. 10, no. 4, pp. 1–15, 2015.
N. Girma, “FREQUENCY OF ABO, RH BLOOD GROUP ALLELES AMONG OROMO, AMHARA AND WOLAYITA ETHNIC GROUP STUDENTS IN ROBE SECONDARY, PREPARATORY AND ZEYBELA PRIMARY SCHOOL, BALE, ETHIOPIA,” International Journal of Genetics and Genomics, vol. 5, no. 2, p. 19, 2017, doi: https://doi.org/10.11648/j.ijgg.20170502.11.
K. I. Shahin, C. Simon, P. Weber, A. Johansen, and M. B. Kjærgaard, “PROGNOSTIC CONSIDERING MISSING DATA: AN INPUT OUTPUT HIDDEN MARKOV MODEL-BASED SOLUTION,” Proc Inst Mech Eng O J Risk Reliab, vol. 237, no. 5, pp. 980–993, Oct. 2023, doi: https://doi.org/10.1177/1748006X221119853.
N. Hayati, M. Kiftiah, and B. Prihandono, “APPLICATION OF THE JUKES CANTOR MODEL IN DETERMINING THE PROBABILITY OF NITROGEN BASES IN THE OFFSPRING OF AN INDIVIDUAL (APLIKASI MODEL JUKES CANTOR DALAM MENENTUKAN PELUANG BASA NITROGEN KETURUNAN SUATU INDIVIDU),” Bimaster: Buletin Ilmiah Matematika, Statistika dan Terapannya, vol. 5, no. 2, pp. 119–128, 2016, doi: https://doi.org/10.26418/bbimst.v5i02.15843.
N. H. Mohd Noor and M. J. Siti Asmaa, “KARL LANDSTEINER (1868–1943): A VERSATILE BLOOD SCIENTIST,” Cureus, Sep. 2024, doi: https://doi.org/10.7759/cureus.68903.
H. F. Jelinek et al., “ALLELIC VARIANTS WITHIN THE ABO BLOOD GROUP PHENOTYPE CONFER PROTECTION AGAINST CRITICAL COVID-19 HOSPITAL PRESENTATION,” Front Med (Lausanne), vol. 8, Jan. 2022, doi: https://doi.org/10.3389/fmed.2021.759648.
P. Vasisth, O. M. Limbalkar, and M. Sharma, “GENETICS OF MULTIPLE ALLELES: CONCEPT AND FUNCTION,” Advances in Genetic Polymorphisms, Jul. 2023, doi: https://doi.org/10.5772/intechopen.1001464.
S. Strome, N. Bhalla, R. Kamakaka, U. Sharma, and W. Sullivan, “CLARIFYING MENDELIAN VS NON-MENDELIAN INHERITANCE,” Genetics, vol. 227, no. 3, pp. 1–7, Jul. 2024, doi: https://doi.org/10.1093/genetics/iyae078.
T. A. Khan, G. K. Nanjundan, D. M. Basvarajaih, and M. Azharuddin, “STATISTICAL MODEL DERIVATION AND EXTENSION OF HARDY – WEINBERG EQUILIBRIUM,” Int J Curr Microbiol Appl Sci, vol. 7, no. 10, pp. 2402–2409, Oct. 2018, doi: https://doi.org/10.20546/ijcmas.2018.710.279.
R. Waples, “TESTING FOR HARDY–WEINBERG PROPORTIONS: HAVE WE LOST THE PLOT?,” Journal of Heredity, vol. 106, no. 1, pp. 1–19, 2015, doi: https://doi.org/10.1093/jhered/esu062.
V. Kulkarni, MODELING AND ANALYSIS OF STOCHASTIC SYSTEMS. Chapman and Hall/CRC, 2016.
M. Awad and R. Khanna, “HIDDEN MARKOV MODEL,” in Efficient Learning Machines: Theories, Concepts, and Applications for Engineers and System Designers, Berkeley: CA: Apress, 2015, ch. 5, pp. 81–104. doi: https://doi.org/10.1007/978-1-4302-5990-9_5.
R. K. Perdana, “INDONESIAN POPULATION DATA BASED ON BLOOD TYPE IN 2024 (DATA JUMLAH PENDUDUK INDONESIA BERDASARKAN GOLONGAN DARAH PADA 2024),” Dinas Kependudukan dan Pencatatan Sipil (Dukcapil) Kementerian Dalam Negeri (Kemendagri). Accessed: Jun. 11, 2025. [Online]. Available: https://dataindonesia.id/varia/detail/data-jumlah-penduduk-indonesia-berdasarkan-golongan-darah-pada-2024
Kementerian Dalam Negeri Republik Indonesia, “DIRECTOR GENERAL OF CIVIL REGISTRATION: INDONESIA HAS A DATABASE OF 37.9 MILLION BLOOD TYPES (DIRJEN DUKCAPIL: INDONESIA MILIKI BANK DATA 37,9 JUTA GOLONGAN DARAH),” Direktorat Jenderal Kependudukan dan Pencatatan Sipil. Accessed: Feb. 20, 2025. [Online]. Available: https://dukcapil.kemendagri.go.id/blog/read/dirjen-dukcapil-indonesia-miliki-bank-data-379-juta-golongan-darah
Kementerian Dalam Negeri Republik Indonesia, “THE MINISTRY OF HOME AFFAIRS’ CIVIL REGISTRATION OFFICE URGES THE PUBLIC TO UPDATE THEIR BLOOD TYPE TO HELP OTHERS (DUKCAPIL KEMENDAGRI IMBAU MASYARAKAT UPDATE GOLONGAN DARAH AGAR BISA BANTU SESAMA),” Direktorat Jenderal Kependudukan dan Pencatatan Sipil. Accessed: Feb. 24, 2025. [Online]. Available: https://dukcapil.kemendagri.go.id/blog/read/dukcapil-kemendagri-imbau-masyarakat-update-golongan-darah-agar-bisa-bantu-sesama
Copyright (c) 2026 Nahrul Hayati, Eko Sulistyono, Andini Setyo Anggraeni

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this Journal agree to the following terms:
- Author retain copyright and grant the journal right of first publication with the work simultaneously licensed under a creative commons attribution license that allow others to share the work within an acknowledgement of the work’s authorship and initial publication of this journal.
- Authors are able to enter into separate, additional contractual arrangement for the non-exclusive distribution of the journal’s published version of the work (e.g. acknowledgement of its initial publication in this journal).
- Authors are permitted and encouraged to post their work online (e.g. in institutional repositories or on their websites) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published works.




1.gif)


