MATHEMATICAL MODELING OF VARICELLA TRANSMISSION USING SVEITR MODEL

  • Sadiyana Yaqutna Naqiya Department of Mathematics, School of Mathematics and Science, Republic of Indonesia Defense University, Indonesia https://orcid.org/0009-0008-6927-5068
  • Vina Lusiana Department of Mathematics, School of Mathematics and Science, Republic of Indonesia Defense University, Indonesia https://orcid.org/0009-0009-3461-0505
  • Achmad Abdurrazzaq Department of Mathematics, School of Mathematics and Science, Republic of Indonesia Defense University, Indonesia https://orcid.org/0000-0002-9227-023X
Keywords: Basic reproduction number, Model development, Numerical simulation, SVEITR Model, Varicella

Abstract

Varicella is a highly contagious disease with strong potential to persist endemically if not adequately controlled. This study develops an SVEITR (Susceptible–Vaccinated–Exposed–Infected–Treated–Recovered) model by extending the SVEIR and SEITR frameworks with a treatment compartment to represent individuals receiving medical care. A mathematical modeling approach was applied through differential equation formulation, equilibrium stability analysis, and computation of the basic reproduction number  using the Next Generation Matrix method. The results show that , confirming a high transmission potential. Numerical simulations indicate that vaccination and treatment reduce disease spread, yet waning immunity sustains a pool of susceptible individuals. These findings highlight the importance of continuous control strategies. The inclusion of a treatment compartment represents a methodological advancement, providing a more comprehensive framework for evaluating the effects of interventions on varicella transmission.

Downloads

Download data is not yet available.

References

J. R. Duncan, C. T. Witkop, B. J. Webber, and A. A. Costello, “VARICELLA SEROEPIDEMIOLOGY IN UNITED STATES AIR FORCE RECRUITS: A RETROSPECTIVE COHORT STUDY COMPARING IMMUNOGENICITY OF VARICELLA VACCINATION AND NATURAL INFECTION,” Vaccine, vol. 35, no. 18, pp. 2351–2357, Apr. 2017, doi: https://doi.org/10.1016/j.vaccine.2017.03.054.

P. Karki et al., “AN OUTBREAK INVESTIGATION OF VARICELLA ZOSTER AMONG MALE MILITARY PERSONNEL IN A MILITARY TRAINING CENTRE,” J. Nepal Med. Assoc., vol. 60, no. 249, pp. 469–472, May 2022, doi: https://doi.org/10.31729/jnma.7440.

S. Patrikar et al., “HEALTH TECHNOLOGY ASSESSMENT OF VARICELLA VACCINE IN THE ARMED FORCES,” Med. J. Armed Forces India, vol. 78, no. 2, pp. 213–220, Apr. 2022, doi: https://doi.org/10.1016/j.mjafi.2021.06.010.

G. Zhu et al., “CHICKENPOX AND MULTIPLE SCLEROSIS: A MENDELIAN RANDOMIZATION STUDY,” J. Med. Virol., vol. 95, no. 1, p. 28315, Jan. 2023, doi: https://doi.org/10.1002/jmv.28315.

A. Patil, M. Goldust, and U. Wollina, “HERPES ZOSTER: A REVIEW OF CLINICAL MANIFESTATIONS AND MANAGEMENT,” Viruses, vol. 14, no. 2, p. 192, Jan. 2022, doi: https://doi.org/10.3390/v14020192.

A. A. Gershon et al., “VARICELLA ZOSTER VIRUS INFECTION,” Nat. Rev. Dis. Prim., vol. 1, no. 1, p. 15016, Jul. 2015, doi: https://doi.org/10.1038/nrdp.2015.16.

L. Laemmle, R. S. Goldstein, and P. R. Kinchington, “MODELING VARICELLA ZOSTER VIRUS PERSISTENCE AND REACTIVATION – CLOSER TO RESOLVING A PERPLEXING PERSISTENT STATE,” Front. Microbiol., vol. 10, no. 2019, p. 1634, Jul. 2019, doi: https://doi.org/10.3389/fmicb.2019.01634.

C. Lo Presti, C. Curti, M. Montana, C. Bornet, and P. Vanelle, “CHICKENPOX: AN UPDATE,” Médecine Mal. Infect., vol. 49, no. 1, pp. 1–8, Feb. 2019, doi: https://doi.org/10.1016/j.medmal.2018.04.395.

B. Hao et al., “EFFICACY, SAFETY AND IMMUNOGENICITY OF LIVE ATTENUATED VARICELLA VACCINE IN HEALTHY CHILDREN IN CHINA: DOUBLE-BLIND, RANDOMIZED, PLACEBO-CONTROLLED CLINICAL TRIAL,” Clin. Microbiol. Infect., vol. 25, no. 8, pp. 1026–1031, Aug. 2019, doi: https://doi.org/10.1016/j.cmi.2018.12.033.

V. Capasso and G. Serio, “A GENERALIZATION OF THE KERMACK-MCKENDRICK DETERMINISTIC EPIDEMIC MODEL,” Math. Biosci., vol. 42, no. 1–2, pp. 43–61, Nov. 1978, doi: https://doi.org/10.1016/0025-5564(78)90006-8.

M. Fošnarič, T. Kamenšek, J. Žganec Gros, and J. Žibert, “EXTENDED COMPARTMENTAL MODEL FOR MODELING COVID-19 EPIDEMIC IN SLOVENIA,” Sci. Rep., vol. 12, no. 1, p. 16916, Oct. 2022, doi: https://doi.org/10.1038/s41598-022-21612-7.

H. Wang, X. Qiu, J. Yang, Q. Li, X. Tan, and J. Huang, “NEURAL-SEIR: A FLEXIBLE DATA-DRIVEN FRAMEWORK FOR PRECISE PREDICTION OF EPIDEMIC DISEASE,” Math. Biosci. Eng., vol. 20, no. 9, pp. 16807–16823, 2023, doi: https://doi.org/10.3934/mbe.2023749.

I. N. Kiselev, I. R. Akberdin, and F. A. Kolpakov, “DELAY-DIFFERENTIAL SEIR MODELING FOR IMPROVED MODELLING OF INFECTION DYNAMICS,” Sci. Rep., vol. 13, no. 1, p. 13439, Aug. 2023, doi: https://doi.org/10.1038/s41598-023-40008-9.

M. El Hajji and A. H. Albargi, “A MATHEMATICAL INVESTIGATION OF AN ‘SVEIR’ EPIDEMIC MODEL FOR THE MEASLES TRANSMISSION,” Math. Biosci. Eng., vol. 19, no. 3, pp. 2853–2875, 2022, doi: https://doi.org/10.3934/mbe.2022131.

M. Irwan, Wahidah Alwi, and Susrianti, “SIMULASI MODEL SVIR (SUSCEPTIBLE, VACCINATED, INFECTED, RECOVERED) PADA KASUS COVID-19,” J. MSA ( Mat. dan Stat. serta Apl., vol. 10, no. 2, pp. 104–108, Dec. 2022, doi: https://doi.org/10.24252/msa.v10i2.33657.

S. P. Sari and E. Arfi, “ANALISIS DINAMIK MODEL SIR PADA KASUS PENYEBARAN PENYAKIT CORONA VIRUS DISEASE-19 (COVID-19),” Indones. J. Appl. Math., vol. 1, no. 2, p. 61, May 2021, doi: https://doi.org/10.35472/indojam.v1i2.354.

Musarifa, Hikmah, and Fardinah, “ANALISIS MODEL MATEMATIKA SEITR PADA PENYAKIT CACAR AIR,” J. Math. Theory Appl., vol. 3, no. 2, pp. 45–52, Dec. 2021, doi: https://doi.org/10.31605/jomta.v3i2.1372.

S. A. Jose, R. Raja, J. Dianavinnarasi, D. Baleanu, and A. Jirawattanapanit, “MATHEMATICAL MODELING OF CHICKENPOX IN PHUKET: EFFICACY OF PRECAUTIONARY MEASURES AND BIFURCATION ANALYSIS,” Biomed. Signal Process. Control, vol. 84, no. february, p. 104714, Jul. 2023, doi: https://doi.org/10.1016/j.bspc.2023.104714.

N. Izzati and A. Andriani, “KENDALI OPTIMAL PADA MODEL PENYEBARAN PENYAKIT DIFTERI DENGAN TINGKAT IMUNITAS ALAMI PADA INDIVIDU TERPAPAR,” J. Ilm. Mat. DAN Terap., vol. 18, no. 1, pp. 1–10, Jun. 2021, doi: https://doi.org/10.22487/2540766X.2021.v18.i1.15339.

M ZULKIFLI WARLI, “ANALISIS KESTABILAN MODEL PERTUMBUHAN SEL KANKER DENGAN TERAPI GEN ONYX P53,” Prox. J. Penelit. Mat. dan Pendidik. Mat., vol. 4, no. 2, pp. 1–11, Aug. 2021, doi: https://doi.org/10.30605/proximal.v4i2.1244.

M. Jannah, M. Ahsar Karim, and Y. Yulida, “ANALISIS KESTABILAN MODEL SEIR UNTUK PENYEBARAN COVID-19 DENGAN PARAMETER VAKSINASI,” BAREKENG J. Ilmu Mat. dan Terap., vol. 15, no. 3, pp. 535–542, Sep. 2021, doi: https://doi.org/10.30598/barekengvol15iss3pp535-542.

P. Gonçalves, “BEHAVIOR MODES, PATHWAYS AND OVERALL TRAJECTORIES: EIGENVECTOR AND EIGENVALUE ANALYSIS OF DYNAMIC SYSTEMS,” Syst. Dyn. Rev., vol. 25, no. 1, pp. 35–62, Jan. 2009, doi: https://doi.org/10.1002/sdr.414.

V. LUSIANA, “PERMODELAN MATEMATIKA TRANSMISI KO-INFEKSI TUBERKULOSIS PADA KOMUNITAS HIV,” Knowl. J. Inov. Has. Penelit. dan Pengemb., vol. 2, no. 2, pp. 146–156, Aug. 2022, doi: https://doi.org/10.51878/knowledge.v2i2.1409.

S. Dharmaratne, S. Sudaraka, I. Abeyagunawardena, K. Manchanayake, M. Kothalawala, and W. Gunathunga, “ESTIMATION OF THE BASIC REPRODUCTION NUMBER (R0) FOR THE NOVEL CORONAVIRUS DISEASE IN SRI LANKA,” Virol. J., vol. 17, no. 1, p. 144, Dec. 2020, doi: https://doi.org/10.1186/s12985-020-01411-0.

S. M. A. Rahman and X. Zou, “MODELLING THE IMPACT OF VACCINATION ON INFECTIOUS DISEASES DYNAMICS,” J. Biol. Dyn., vol. 9, no. sup1, pp. 307–320, Jun. 2015, doi: https://doi.org/10.1080/17513758.2014.986545.

P. San Martin et al., “SYSTEMATIC LITERATURE REVIEW OF HERPES ZOSTER DISEASE BURDEN IN SOUTHEAST ASIA,” Infect. Dis. Ther., vol. 12, no. 6, pp. 1553–1578, Jun. 2023, doi: https://doi.org/10.1007/s40121-023-00822-0.

T. Cheng, Y. Bai, X. Sun, Y. Ji, F. Zhang, and X. Li, “EPIDEMIOLOGICAL ANALYSIS OF VARICELLA IN DALIAN FROM 2009 TO 2019 AND APPLICATION OF THREE KINDS OF MODEL IN PREDICTION PREVALENCE OF VARICELLA,” BMC Public Health, vol. 22, no. 1, p. 678, Dec. 2022, doi: https://doi.org/10.1186/s12889-022-12898-3.

Published
2026-01-26
How to Cite
[1]
S. Y. Naqiya, V. Lusiana, and A. Abdurrazzaq, “MATHEMATICAL MODELING OF VARICELLA TRANSMISSION USING SVEITR MODEL”, BAREKENG: J. Math. & App., vol. 20, no. 2, pp. 1613–1626, Jan. 2026.