PENGARUH HARI RAYA IDUL FITRI TERHADAP INFLASI DI INDONESIA DENGAN PENDEKATAN ARIMAX (VARIASI KALENDER)
Abstract
The inflation rate is very important for the government to maintain the stability of the country's economy. If inflation cannot be controlled, the prices of goods and services will rise uncontrollably. Eid al-Fitr causes increase basic needs price. It is assumed that abnormal prices have an effect on inflation. The purpose of this study is to calculate the effect of Eid Al-Fitr to Indonesian monthly inflation. The ARIMAX (Calendar Variation) method is used to determine the effect of Eid Al-Fitr on Indonesian monthly inflation. The data used in this study is the monthly inflation by Badan Pusat Statistik. The characteristics of inflation in July 2008 to June 2019 are unique. The average of inflation is 0,39 and the variance of inflation is 0,26. The ARIMAX model shows that January, May, June, July, August, November, December, and Eid Al-Fitr has a significant effect on Indonesian monthly inflation. The effect of the Eid Al-Fitr was 0,47. The meaning of this number is that when Eid al-Fitr arrives, inflation will increase by 0,47.
Downloads
References
S. Sukirno, Makroekonomi Modern, Jakarta: PT Raja Grafindo Persada, 2000.
Anonim, “Bagaimana Venezuela yang kaya minyak tapi mata uangnya ambrukâ€, BBC, 22 Agustus 2018, [Online]. Tersedia di https:// www.bbc.com /indonesia/dunia-45272065 [diakses 31 Agustus 2019].
C. D. Piros and J. E. Pinto, Economics for Investment Decision Makers, New Jersey: John Wiley & Son, 2013.
Mustanginah, “Pengaruh Hari Raya Idul Fitri Terhadap Inflasi Kota Tasikmalayaâ€, Jurnal Dinamika Ekonomi Pembangunan, vol. 2 vo. 1, pp. 63-69, 2019.
A. Sutawijaya, dan Zulfahmi, “Pengaruh Faktor-Faktor Ekonomi Terhadap Inflasi Di Indonesiaâ€, Jurnal Organisasi dan Manajemen, vol. 8, no. 2, pp. 85 –101, September 2012.
P.W. Nugroho, “Analisis Faktor-Faktor Yang Mempengaruhi Inflasi Di Indonesiaâ€, Skripsi, Universitas Diponegoro, Semarang, Indonesia, 2012.
T.M. Langi,, V. Masinambow, dan H. Siwu, “Analisis Pengaruh Suku Bunga Bi, Jumlah Uang Beredar, Dan Tingkat Kurs Terhadap Tingkat Inflasi Di Indonesiaâ€, Jurnal Berkala Ilmiah Efisiensi, vol. 14, no. 2, pp 44-58, Mei 2014.
Fasanya, O. Ismail, Adekoya, and B. Oluwasegun, “Modelling inflation rate volatility in Nigeria with structural breaksâ€, Journal of Applied Statistics, vol. 08, no. 1, pp. 175-193, june 2017.
N. S. Dini, Haryono, dan Suhartono, “Peramalan Kebutuhan Premium dengan Metode ARIMAX untuk Optimasi Persediaan di Wilayah TBBM Madiunâ€, Jurnal Sains Dan Seni ITS, vol. 1, no. 1, pp. 230-235, September 2012
Hartati, “Penggunaan Metode Arima Dalam Meramal Pergerakan Inflasiâ€, Jurnal Matematika, Saint, dan Teknologi, vol. 18, no. 1, pp. 1-10, Maret 2017.
A. P. B. Laga, S. Wahyuningsih, dan M. N. Hayanti, “Peramalan Penjualan Pakaian dengan Autoregressive Integrated Moving Average with Exogeneous Input (ARIMAX)â€, Jurnal Eksponensial, vol. 9, no. 2, pp. 111-118, Nopember 2018.
R. E. Wulansari dan Suhartono, “Peramalan Netflow Uang Kartal dengan Metode ARIMAX dan Radial Basis Function Network (Studi Kasus Di Bank Indonesia)â€, Jurnal Sains Dan Seni POMITS, vol. 3, no.2, pp. 73-78, 2014.
M.H. Lee, Suhartono, and N. A. Hamzah, “Calendar Variation Model Based on ARIMAX for Forecasting Sales Data with Ramadhan Effectâ€, Proceedings of the Regional Conference on Statistical Sciences, pp. 349-361, June 2010.
R. E. Walpole, R. H. Myers, S. L. Myers, and K. Ye, Probability & Statistics for engineers & scientist, Ninth Edition, Boston: Pearson Education, 2011.
W.W.S. Wei, Time Series Analysis: Univariate and Multivariate Methods, 2nd Ed., New York: Pearson, 2006.
Suhartono, â€Calendar Variation Model For Forecasting Time Series Data With Islamic Calendar Effectâ€, Jurnal Matematika, Sains, dan Teknologi, vol. 7, no. 2, pp. 85-94, September 2006.
N. M. D. Ermayanthi, D. Agus, dan Suhartono, “Peramalan Penjualan Buah di Moena Fresh Bali dengan Menggunakan Model Variasi Kalenderâ€, Jurnal Sains Dan Seni ITS, vol. 1, no. 1, pp. 124-129, September 2012.
B.L. Bowerman and R.T. O’Connell, Forecasting and Time Series: An Applied Approach, 3rd edition, California: Duxbury Press, 1993.
R. Nochai and T. Nochai, ARIMA Model for Forecasting Oil Palm Price. Proceedings of the 2md IMT-GT Regional Conference on Mathematics, Statistics and Applications, pp. 1-7, 13-15 June 2006.
J. D. Cryer and K. S. Chan, Time Series Analysis with Application in R, 2nd Ed., New York: Springer, 2008.
N. Lestari dan N. Wahyuningsih, “Peramalan Kunjungan Wisata dengan Pendekatan Model SARIMA (Studi kasus: Kusuma Agrowisata)â€, Jurnal Sains Dan Seni ITS,vol. 1, no. 1, pp. 29-33, September 2012.
R. A. Pitaloka, Sugito, dan R. Rahmawati. “Perbandingan Metode ARIMA Box-Jenkins Dengan ARIMA Ensemble Pada Peramalan Nilai Impor Provinsi Jawa Tengahâ€, Jurnal Gaussian, vol 8, no. 2, pp. 194 – 207, 2019.
R. Faulina, “Perbandingan Akurasi Ensemble ARIMA Dalam Peramalan Curah Hujan Di Kota Batu, Malang, Jawa Timurâ€, Jurnal Matematika, Sains, dan Teknologi, vol. 15, no. 2, pp. 75-83, September 2014.
Authors who publish with this Journal agree to the following terms:
- Author retain copyright and grant the journal right of first publication with the work simultaneously licensed under a creative commons attribution license that allow others to share the work within an acknowledgement of the work’s authorship and initial publication of this journal.
- Authors are able to enter into separate, additional contractual arrangement for the non-exclusive distribution of the journal’s published version of the work (e.g. acknowledgement of its initial publication in this journal).
- Authors are permitted and encouraged to post their work online (e.g. in institutional repositories or on their websites) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published works.