MODEL OPTIMISASI NONLINIER JARINGAN PIPA GAS DENGAN PERCABANGAN

  • Francis Y. Rumlawang Jurusan Matematika FMIPA Universitas Pattimura
Keywords: Objective function, panhandle A, panhandle B, stepest descent

Abstract

Gas transmission system has a branch to costumer area that affects to flow rate, gas pressure, and pipe diameter. This paper discusses optimization of this transmission system. Optimum gas pressure and pipe diameter was found by minimizing cost objective function subjects to panhandle A and panhandle B constrain function. Steepest Descent method which is combined with Rangekutta methods is use to determine the optimization process. The result shows that the pipe branches affect the optimization variables.

Downloads

Download data is not yet available.

References

Ikoku, Chi. U, Natural Gas Production Engineering, John Wiley and Sons Inc.,New York 1984.
Rao S.S, Optimization Theory and Application, 2nd ed, Wiley Eastern Limited, 1989.
Mochamad Apri., Model Biaya Total Jaringan Pipa Transmisi Gas dan Optimasinya, Departemen Matematika ITB Bandung, Tugas Akhir, 2002.
Mucharam, L., Hartono, A. B, Model untuk Penentuan Diameter Optimum Pipa Transmisi Gas dengan Model Waymouth, Panhandle A, Panhandle B dan Blasius, JTM-FIKTM-ITB Vol VII No. 4, 2000
OPPINET, Final Result- March 2002, Optimization on Gas and Transmission & Distribution Pipeline Network, Center for Research on the Application and Advancement of Mathematics- P4M ITB.
Matthews, John H., Numerical Methods for Mathematics, Science and Engineering, 2nd ed, Prentice hall, Engelwood Cllifs, New Jersey 1992.
Arsegianto, Suwono E., Apri Mochamad., Non-Linear Optimization Model for Gas Transmission System: A Case of Grissik-Duri Pipeline, SPE International, 2003.
Published
2007-03-01
How to Cite
[1]
F. Rumlawang, “MODEL OPTIMISASI NONLINIER JARINGAN PIPA GAS DENGAN PERCABANGAN”, BAREKENG: J. Math. & App., vol. 1, no. 1, pp. 1-8, Mar. 2007.

Most read articles by the same author(s)