FUNGSIONAL LINEAR-2 DALAM RUANG NORM-2
Abstract
Ruang norm-2 merupakan perluasan dari ruang norm yang telah kita kenal. Ruang norm-2 dan perumumannya ruang norm-n (ð‘›â‰¥2), pertama kali diperkenalkan oleh Gähler pada tahun 1960-an, [3, 4, 5, 6]. Kemudian Misiak di tahun 1989 memperkenalkan ruang hasil kali dalam-n (ð‘›â‰¥2) [16]. Setelah itu, banyak peneliti yang mengkaji sifat-sifat ataupun aspek-aspek dalam ruang norm-2 maupun ruang norm-n. Hal ini dapat dilihat pada beberapa penelitian dalam [1,2,7,8,9,10,11,12,13,14,15,18,19]. Dalam penelitian ini aspek yang akan ditinjau adalah fungsional linear-2 terbatas pada ruang norm-2. Untuk meninjau beberapa sifatnya, sebelumnya akan diperkenalkan fungsional linear-2 di ruang norm-2 dengan beberapa tipe keterbatasn. Berdasarkan tipe keterbatasan ini akan dibentuk ruang-ruang dual. Ruang-ruang dual ini memuat semua fungsional linear-2 masing-masing berdasarkan tipe keterbatasannya. Selanjutnya akan ditunjukkan bahwa ruang-ruang dual ini ekuivalen.
Downloads
References
[2] Ekariani, S., Gunawan, H. dan Idris, M. (2013): A contractive mapping theorem for the n-normed space of psummable sequences, J. Math. Analysis, 4, 1–7. Freese, R. W. dan Cho, Y. J. (2001): Geometry of linear 2-normed spaces, Nova Publishers.
[3] Gähler, S. (1964): Lineare 2-normierte R¨aume, Mathematische Nachrichten, 28(1-2), 1–43.
[4] Gähler, S. (1969a): Untersuchungen ¨uber verallgemeinerte m-metrische R¨aume. I, Mathematische Nachrichten, 40(1-3), 165–189.
[5] Gähler, S. (1969b): Untersuchungen ¨uber verallgemeinerte m-metrische R¨aume. II, Mathematische Nachrichten, 40(4-6), 229–264.
[6] Gähler, S. (1969c): Untersuchungen ¨uber verallgemeinerte m-metrische R¨aume. III, Mathematische Nachrichten, 41(1-3), 23–36.
[7] Gozali, S., Gunawan, H. dan Neswan, O. (2010): On n-norms and bounded n-linear functionals in a Hilbert space, Ann. Funct. Anal, 1(1), 72–79.
[8] Gunawan, H. (2001): On n-inner products, n-norms, and the Cauchy-Schwarz inequality, Scientiae Mathematicae Japonicae, 55(1), 53–60.
[9] Gunawan, H. (2002b): Inner products on n-inner product spaces, Soochow Journal of Mathematics, 28(4), 389–398.
[10] Gunawan, H., Kikianty, E., Mashadi, S. G. dan Sihwaningrum, I. (2006): Orthogonality in n-normed spaces, Indones Math. Soc,.
[11] Gunawan, H. dan Mashadi, M. (2001): On n-normed spaces, International Journal of Mathematics and Mathematical Sciences, 27(10), 631–639.
[12] Gunawan, H., Neswan, O. dan Setya-Budhi, W. (2005): A formula for angles between subspaces of inner product spaces, Contributions to Algebra and Geometry, 46(2), 311–320.
[13] Gunawan, H., Sukaesih, E. dan Neswan, O. (2015): Fixed point theorems on bounded sets in an n-normed space, J. Math. Anal, 3, 51–58.
[14] Kir, M. dan Kiziltunc, H. (2014): On fixed point theorems for contraction mappings in n-normed spaces, Appl.Math. Inf. Lett, 2, 59–64.
[15] Konca, S¸ dkk., (2014): Some remarks on Lˆ p as an n-normed space, Mathematical Sciences and Applications ENotes,2(2).
[16] E. Kreyszig, Introductory Functional Analysis with Applications, John Wiley and Sons Inc, (1978).
[17] Misiak, A. (1989): n-Inner Product Spaces, Mathematische Nachrichten, 140(1), 299–319.
[18] Park, C.-G., Rassias, T. M. dan Campus, Z. (2006): Isometries on linear n-normed spaces, J. Inequal. Pure Appl.Math, 7(5), 168.
[19] Soenjaya, A. L. (2012): On n-bounded and n-continuous operator in n-normed space, Journal of the Indonesian Mathematical Society, 18(1).
[20] Trencevski, K. dan Malceski, R. (2006): On a generalized n-inner product and the corresponding Cauchy-Schwarz inequality, J. Inequal. Pure and Appl. Math, 7(2).
Authors who publish with this Journal agree to the following terms:
- Author retain copyright and grant the journal right of first publication with the work simultaneously licensed under a creative commons attribution license that allow others to share the work within an acknowledgement of the work’s authorship and initial publication of this journal.
- Authors are able to enter into separate, additional contractual arrangement for the non-exclusive distribution of the journal’s published version of the work (e.g. acknowledgement of its initial publication in this journal).
- Authors are permitted and encouraged to post their work online (e.g. in institutional repositories or on their websites) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published works.