FUNGSI ELEMEN KELAS STUMMEL MODULUS TERBATAS TETAPI BUKAN ELEMEN DARI KELAS STUMMEL

  • Nicky Kurnia Tumalun Universitas Negeri Manado
Keywords: kelas Stummel modulus terbatas, kelas Stummel

Abstract

In the paper [1], it was given a function which belongs to the bounded Stummel modulus classes but not in Stummel classes. The given proof of this function properties in that paper was not obvious and very concise. By using the countable linearity property of integral, polar coordinate of integration, other properties of Lebesgue measure and integration, and some observation on the geometric property of the open ball in Euclidean spaces, we prove in detail the properties of this function.

Downloads

Download data is not yet available.

References

N. K. Tumalun, D. I. Hakim and H. Gunawan, “Inclusion between generalized Stummel classes and other function spaces,†Math. Inequal. Appl., vol. 23, no. 2, pp. 547-562, 2020.

N. K. Tumalun, H. Gunawan and J. Lindiarni, “On the inclusion between weak Lebesgue spaces and Stummel classes,†in 5th ICRIEMS, Yogyakarta, 2018.

N. K. Tumalun and H. Gunawan, “Morrey spaces are embedded between weak Morrey spaces and Stummel classes,†J. Indones. Math. Soc., vol. 25, no. 3, pp. 203-209, 2019.

G. Di Fazio, M. S. Fanciullo and P. Zamboni, “Regularity up to the boundary for some degenerate elliptic operators,†Applicable Analysis, pp. 1-13, 2020.

S. Samko, “Morrey spaces are closely embedded between vanishing Stummel class,†Math. Ineq. Appl., vol. 17, no. 2, pp. 627-639, 2014.

E. M. Stein and S. Sharkarchi, Real Analysis: Measure Theory, Integration, and Hilbert Spaces, New Jersey: Princenton University Press, 2005.

H. L. Royden and P. M. Fitzpatrick, Real Analysis. Fourth Edition, Boston: Prentice Hall, 2010.

G. B. Folland, Real Analysis: Modern Techniques and Their Applications. Second Edition, New York: John Willey and Sons, Inc., 1999.

Published
2021-03-01
How to Cite
[1]
N. Tumalun, “FUNGSI ELEMEN KELAS STUMMEL MODULUS TERBATAS TETAPI BUKAN ELEMEN DARI KELAS STUMMEL”, BAREKENG: J. Math. & App., vol. 15, no. 1, pp. 077-084, Mar. 2021.