A MODEL ARCH(1) DAN GARCH(1,1) PADA PERAMALAN HARGA SAHAM PT. COWELL DEVELOPMENT Tbk.
Abstract
Penelitian ini memfokuskan pada peramalan harga saham PT. Cowell Development Tbk. menggunakan data pada Januari 2013 sampai Desember 2016. Hasil analisis diperoleh model terbaik adalah model ARIMA(2,1,12). Hasil pengujian asumsi residual white noise menggunakan uji Ljung-Box menunjukkan bahwa model ARIMA(2,1,12) merupakan residual white noise. Hasil uji ARCH-LM menunjukkan data mengandung efek heteroskedastisitas atau unsur ARCH. Model yang diajukan dalam penelitian ini adalah ARCH(1) dan GARCH(1,1). Nilai AIC dan BIC terkecil dari dua model ini adalah ARCH(1). Model ARIMA(2,1,12) dengan residual ARCH(1) merupakan model terbaik untuk meramalkan saham PT. Cowel Development Tbk. Penerapan model ARCH(1) untuk meramalkan harga saham PT. Cowel Development Tbk selama 10 hari periode 2013-2016, menunjukkan bahwa peramalan sudah mendekati data faktual dengan nilai MAPE sebesar 0,043%. Hal ini memberikan indikasi hasil peramalan sudah mendekati data faktual.
Downloads
References
A. Widarjono, “Aplikasi Model ARCH Kasus Tingkat Inflasi Indonesiaâ€, Jurnal Ekonomi Pembangunan, Vol. 7, No. 1, pp. 71-82, 2002.
A. P. Desvina, N. Rahmah, “Penerapan Metode ARCH/GARCH Dalam Peramalan Indeks Harga Saham Sektoralâ€, .Jurnal Sains Matematika dan Statistika , Vol. 2, No. 1, pp. 1-10, 2016
C. JK, “https://finance.yahoo.com/,†PT Cowell Development Tbk, 01 April 2018. [Online]. Available: https://finance.yahoo.com. [Diakses 1 January 2018].
J. D. Cryer, Chan dan Kung-Sik, Time Series Analysis, Lowa: Springer, 2008.
M. S. Lo, Generalized Autoregressive Conditional Heteroscedastic Time Series Models, Simon Fraser University: Simon Fraser University, 2003.
N. Untari, A. A. Mattjik dan A. Saefuddin, “Analisis Deret Waktu dengan Ragam Galat Heterogen dan Asimetrik,†Forum Statistika dan Komputasi, vol. 14, no. 1, pp. 22-33, 2009.
S. Makridakis, S. C. Wheelwright dan R. J. Hyn, Forecasting methods and applications, United States: John wiley & sons, 2008.
T. Bollerslev, “Generalized Autoregressive Conditional Heteroskedasticity,†Journal of Econometrics, Vol. 31, No. 3, pp. 307-327, 1986.
W. Enders, Applied Econometric Time Series, United States : Wiley Series in Probability and Statistics, 1995.
W. W. Wei, Time Series Analysis: Univariate and Multivariate Method, New York: Pearson Education, 2006.
W. Y. Eliyawati, R. R. Hidayat dan D. F. Azizah, “Penerapan Model GARCH (Generalized Autogressive Conditional Heteroscedaticity) untuk Menguji Pasar Modal Efisien di Indonesia,†Jurnal Adminsitrasi Bisnis (JAB), vol. 7, no. 2, pp. 1-10, 2014.
Authors who publish with this Journal agree to the following terms:
- Author retain copyright and grant the journal right of first publication with the work simultaneously licensed under a creative commons attribution license that allow others to share the work within an acknowledgement of the work’s authorship and initial publication of this journal.
- Authors are able to enter into separate, additional contractual arrangement for the non-exclusive distribution of the journal’s published version of the work (e.g. acknowledgement of its initial publication in this journal).
- Authors are permitted and encouraged to post their work online (e.g. in institutional repositories or on their websites) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published works.