COMPARISON OF FUZZY C-MEANS AND FUZZY GUSTAFSON-KESSEL CLUSTERING METHODS IN PROVINCIAL GROUPING IN INDONESIA BASED ON CRIMINALITY-RELATED FACTORS

  • Bella Destia Department of Statistics, Universitas Islam Indonesia, Indonesia
  • Mujiati Dwi Kartikasari Department of Statistics, Universitas Islam Indonesia, Indonesia
Keywords: Clustering, Crime, Fuzzy, Fuzzy C-Means, Fuzzy Gustafson-Kessel

Abstract

Indonesia is a country that has a population density that is increasing every year, with the increase in population density, the crime rate in Indonesia is increasing. Criminal acts arise because they are supported by factors that cause crime. To improve the security and welfare of the Indonesian people, the authors grouped each province in Indonesia based on the factors that influence crime. This study uses a comparison of the Fuzzy C-Means Clustering (FCM) and Fuzzy Gustafson-Kessel Clustering (FGK) methods by using the validation index for determining the optimal cluster, namely the Davies Bouldin Index The data used  is secondary data in the form of variables forming factors that affect the crime rate in Indonesia, where the data obtained comes from the website of the Central Statistics Agency (BPS). The results obtained in this study for the FGK method are better than the FCM method because they have a smaller standard deviation ratio. The results of grouping using the best method, namely FGK, it was found that the optimal number of clusters formed was 5 clusters with the results of grouping cluster 1 consisting of 6 provinces, cluster 2 consisting of 4 provinces, cluster 3 consisting of 11 provinces, cluster 4 consisting of 5 provinces, and cluster 5 consisting of 8 provinces.

Downloads

Download data is not yet available.

References

A. Kurniawan, “Pengertian Hedonisme beserta Penyebab dan Dampaknya,” 2020. https://www.merdeka.com/jabar/pengertian-hedonisme-beserta-penyebab-dan-dampaknya-kln.html.

I. E. Alamsyah, “Jerat Hedonisme di Kalangan Masyarakat,” 2019. https://republika.co.id/berita/q0abgr349/jerat-hedonisme-di-kalangan-masyarakat.

F. A. Putri and N. Rochmawati, “Penerapan Algoritma Gustafson-Kessel untuk Clustering Tweets Mention Akun Go-jek dan Grab Indonesia,” J. Informatics Comput. Sci., vol. 2, no. 3, pp. 204–212, 2021.

R. Khairani and Y. Ariesa, “Analisis Faktor-Faktor Yang Mempengaruhi Tingkat Kriminalitas Sumatera Utara (Pendekatan Ekonomi),” Kaji. Ekon. dan Kebijak. Publik, vol. 4, no. 2, pp. 99–110, 2019.

R. K. Putri, B. Warsito, and M. Mustafid, “Implementasi Algoritma Modified Gustafson-Kessel untuk Clustering Tweets pada Akun Twitter Lazada Indonesia,” J. Gaussian, vol. 8, no. 3, pp. 285–295, 2019.

D. P. Hapsari and E. Widodo, “Pengelompokan Daerah Rawan Kriminalitas di Indonesia Menggunakan Analisis K-Means Clustering,” in Prosiding SI MaNIs (Seminar Nasional Integrasi Matematika dan Nilai Islami), 2017, pp. 147–153.

L. Suriani, “Pengelompokan Data Kriminal Pada Poldasu Menentukan Pola Daerah Rawan Tindak Kriminal Menggunakan Data Mining Algoritma K-Means Clustering,” J. Sist. Komput. dan Inform., vol. 1, no. 2, pp. 151–157, 2020.

D. L. Davies and D. W. Bouldin, “A Cluster Separation Measure,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 1, no. 2A, 1979, doi: https://doi.org/10.1109/TPAMI.1979.4766909.

E. Muningsih, I. Maryani, and V. R. Handayani, “Penerapan Metode K-Means dan Optimasi Jumlah Cluster dengan Index Davies Bouldin untuk Clustering Propinsi Berdasarkan Potensi Desa,” Evolusi J. Sains dan Manaj., vol. 9, no. 1, pp. 95–100, 2021.

S. M. Guthikonda, Kohonen Self-Organizing Maps. Wittenberg University, 2005.

J. Han, M. Kamber, and J. Pei, Data Mining Consepts and Techniques Third Edition. United States of America: ELSEVIER, 2012.

A. Mahmudan, “Clustering of District or City in Central Java Based COVID-19 Case Using K-Means Clustering,” J. Mat. Stat. dan Komputasi, vol. 17, no. 1, pp. 1–13, 2020.

B. Wira, A. E. Budianto, and A. S. Wiguna, “Implementasi Metode K-Medoids Clustering untuk Mengetahui Pola Pemilihan Program Studi Mahasiswa Baru Tahun 2018 di Universitas Kanjuruhan Malang,” RAINSTEK J. Terap. Sains Teknol., vol. 1, no. 3, pp. 53–68, 2019.

R. Xu and D. C. Wunsch, Clustering. New Jersey: John Wiley & Sons, Inc., 2009.

U. Putriana, Y. Setyawan, and Noeryanti, “Metode Cluster Analysis untuk Pengelompokan Kabupaten/Kota di Provinsi Jawa Tengah Berdasarkan Variabel yang Mempengaruhi Kemiskinan pada Tahun 2013,” J. Stat. Ind. dan Komputasi, vol. 1, no. 1, pp. 38–52, 2016.

M. S. Delsen, A. Z. Wattimena, and S. Saputri, “Penggunaan Metode Analisis Komponen Utama untuk Mereduksi Faktor-Faktor Inflasi di Kota Ambon,” Barekeng J. Ilmu Mat. dan Terap., vol. 11, no. 2, pp. 109–118, 2017.

Hardisman, Analisis Faktor, Analisis Jalur, dan Structural Equation Modelling dengan JASP. Yogyakarta: Bintang Pustaka Mardani, 2021.

E. T. Luthfi, “Fuzzy C-Means untuk Clustering Data (Studi Kasus: Data Performance Mengajar Dosen),” 2007.

W. C. Donald and E. Gustafson, “Fuzzy Clustering with a Fuzzy Covariance Matrix,” 1978.

S. B. Purnamasari, H. Yasin, and T. Wuryandari, “Pemilihan Cluster Optimum pada Fuzzy C-Means (Studi Kasus: Pengelompokan Kabupaten/Kota di Provinsi Jawa Tengah Berdasarkan Indikator Indeks Pembangunan Manusia),” J. Gaussian, vol. 3, no. 3, pp. 491–498, 2014.

S. Purnomo, “Tingkat Kriminalitas Sumut (Masih) Tinggi,” 2019. https://analisadaily.com/berita/arsip/2019/2/19/695959/tingkat-kriminalitas-sumut-masih-tinggi/.

Published
2023-06-11
How to Cite
[1]
B. Destia and M. Kartikasari, “COMPARISON OF FUZZY C-MEANS AND FUZZY GUSTAFSON-KESSEL CLUSTERING METHODS IN PROVINCIAL GROUPING IN INDONESIA BASED ON CRIMINALITY-RELATED FACTORS”, BAREKENG: J. Math. & App., vol. 17, no. 2, pp. 1093-1102, Jun. 2023.