TEXT CLASSIFICATION OF TWITTER OPINION RELATED TO PERMENDIKBUD 30/2021 USING BIDIRECTIONAL LSTM

  • Zakiyatul Fitriyah Department of Statistics, Universitas Islam Indonesia, Indonesia
  • Mujiati Dwi Kartikasari Department of Statistics, Universitas Islam Indonesia, Indonesia
Keywords: Permendikbud 30/2021, Classification, LSTM, BiLSTM

Abstract

During the COVID-19 outbreak, sexual violence in Indonesia has risen. Sexual abuse is prevalent even within the realm of education. Many incidents of sexual assault are reported within the higher education sector. The Ministry of Education, Culture, Research, and Technology published Decree of the Minister of Education and Culture Number 30/2021 (Permendikbud 30/2021) on the Prevention and Handling of Sexual Violence in Higher Education in an effort to prevent sexual violence on campus. This regulation's issuance has become a popular topic of discussion on social media. Twitter is one of the social media platforms where opinions are expressed. The publication of Permendikbud 30/2021 elicited a variety of views, from those who supported the rule to those who did not. This study's objective is to categorize tweets about Permendikbud 30/2021. Bidirectional LSTM (BiLSTM) was utilized to classify data in this study. The accuracy values are 87%, the precision values are 82%, and the recall values are 96% based on the findings of the analysis comparing training data of 80% to testing data of 20%.

Downloads

Download data is not yet available.

References

Kemendikbudristek, “Abstrak Permen 30 Tahun 2021 Tentang Pencegahan Dan Penanganan Kekerasan Seksual Di Lingkungan Perguruan Tinggi,” vol. 5, p. 6, 2021.

Komnas Perempuan, “Kekerasan Seksual di Lingkungan Pendidikan,” 2020.

Kemendikbud, “Wujudkan Lingkungan Perguruan Tinggi yang Aman dari Kekerasan Seksual,” 2021. .

A. Novantirani, M. K. Sabariah, and V. Effendy, “Analisis Sentimen pada Twitter untuk Mengenai Penggunaan Transportasi Umum Darat Dalam Kota dengan Metode Support Vector Machine,” e-Proceeding Eng., vol. 2, 2015.

I. Budiman and R. Ramadina, “Penerapan Fungsi Data Mining Klasifikasi untuk Prediksi Masa Studi Mahasiswa Tepat Waktu pada Sistem Informasi Akademik Perguruan Tinggi,” Ijccs, vol. x, No.x, no. 1, pp. 1–5, 2015.

D. J. M. Pasaribu, K. Kusrini, and S. Sudarmawan, “Peningkatan Akurasi Klasifikasi Sentimen Ulasan Makanan Amazon dengan Bidirectional LSTM dan Bert Embedding,” Inspir. J. Teknol. Inf. dan Komun., vol. 10, no. 1, pp. 9–20, 2020, doi: 10.35585/inspir.v10i1.2568.

E. M. O. N. Haryanto, A. K. A. Estetikha, and R. A. Setiawan, “Implementasi SMOTE untuk Mengatasi Imbalanced Data Pada Sentimen Analisis Sentimen Hotel di Nusa Tenggara Barat dengan Menggunakan Algoritma SVM,” J. Inf. Interaktif, vol. 7, 2022.

F. F. Rachman and S. Pramana, “Analisis Sentimen Pro dan Kontra Masyarakat Indonesia tentang Vaksin COVID-19 pada Media Sosial Twitter,” Heal. Inf. Manag. J. ISSN, vol. 8, no. 2, pp. 2655–9129, 2020.

H. A. Parhusip, “Study on COVID-19 in theWorld and Indonesia Using Regression Model of SVM, Bayesian Ridge and Gaussian,” J. Ilm. Sci., vol. 20, 2020, doi: 10.35799/jis.20.2.2020.28256.

I. Cholissodin and A. A. Soebroto, “AI , Machine Learning & Deep Learning ( Teori & Implementasi ),” no. December, 2021.

N. P. Y. T. Wijayanti, E. N. Kencana, and I. W. Sumarjaya, “SMOTE: Potensi Dan Kekurangannya Pada Survei,” E-Jurnal Mat., vol. 10, no. 4, 2021.

K. S. Nugroho, I. Akbar, A. N. Suksmawati, and I. Istiadi, “Deteksi Depresi dan Kecemasan Pengguna Twitter,” 4th Conf. Innov. Appl. Sci. Technol. (CIASTECH 2021), no. Ciastech, pp. 287–296, 2021.

Z. Zhao, W. Chen, X. Wu, P. C. Y. Chen, and J. Liu, “LSTM network: a deep learning approach for short‐term traffic forecast,” IET Intell. Transp. Syst., vol. 11, no. 2, pp. 68–75, Mar. 2017, doi: 10.1049/iet-its.2016.0208.

J. Abdillah, I. Asror, and Y. F. A. Wibowo, “Klasifikasi Emosi pada Lirik Lagu menggunakan Metode Bidirectional LSTM dengan Pembobotan GloVe Word Representation,” J. Resti, vol. 5, no. 1, pp. 1–4, 2020.

H. Elfaik and E. H. Nfaoui, “Deep Bidirectional LSTM Network Learning-Based Sentiment Analysis for Arabic Text,” J. Intell. Syst., vol. 30, no. 1, pp. 95–412, 2021.

Published
2023-06-11
How to Cite
[1]
Z. Fitriyah and M. Kartikasari, “TEXT CLASSIFICATION OF TWITTER OPINION RELATED TO PERMENDIKBUD 30/2021 USING BIDIRECTIONAL LSTM”, BAREKENG: J. Math. & App., vol. 17, no. 2, pp. 1113-1122, Jun. 2023.