ANALISIS RANDOM FOREST PADA KLASIFIKASI CART KETIDAKTEPATAN WAKTU KELULUSAN MAHASISWA UNIVERSITAS TERBUKA
Abstract
Classification and Regression Tree (CART) is one of the classification methods that are popularly used in various fields. The method is considered capable of dealing with various data conditions. However, the CART method has weaknesses in the classification tree prediction, which is less stable in changes in learning data which will cause major changes in the results of the classification tree prediction. Improving the predictions of the CART classification tree, an ensemble random forest method was developed that combines many classification trees to improve stability and determine classification predictions. This study aims to improve CART predictive stability and accuracy with Random Forest. The case used in this study is the classification of inaccuracies in Open University student graduation. The results of the analysis show that random forest is able to increase the accuracy of the classification of the inaccuracy of student graduation that reaches convergence with the prediction of classification reaching 93.23%.
Downloads
Authors who publish with this Journal agree to the following terms:
- Author retain copyright and grant the journal right of first publication with the work simultaneously licensed under a creative commons attribution license that allow others to share the work within an acknowledgement of the work’s authorship and initial publication of this journal.
- Authors are able to enter into separate, additional contractual arrangement for the non-exclusive distribution of the journal’s published version of the work (e.g. acknowledgement of its initial publication in this journal).
- Authors are permitted and encouraged to post their work online (e.g. in institutional repositories or on their websites) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published works.