ESTIMATION OF A BI-RESPONSE TRUNCATED SPLINE NONPARAMETRIC REGRESSION MODEL ON LIFE EXPECTANCY AND PREVALENCE OF UNDERWEIGHT CHILDREN IN INDONESIA

• Anggi Putri Anisar Statistics Study Program, Faculty of Mathematics and Natural Sciences, Mulawarman University, Indonesia
• Sifriyani Sifriyani Statistics Study Program, Faculty of Mathematics and Natural Sciences, Mulawarman University, Indonesia
• Andrea Tri Rian Dani Statistics Study Program, Faculty of Mathematics and Natural Sciences, Mulawarman University, Indonesia
Keywords: GCV, Nonparametric Biresponse Regression, Truncated Spline

Abstract

Researchers use the nonparametric regression method because it provides excellent flexibility in the modeling process. Nonparametric regression procedures can be used if the relationship pattern between the predictor and response variables is unknown. The truncated spline method is one of the most frequently used nonparametric regression methods. A truncated spline is a polynomial slice with continuous segmented properties, and the resulting curve is relatively smooth. The advantage of truncated splines is that they can be used on data that experience behavior changes at specific intervals. The nonparametric spline truncated bi-response regression approach is used when one or more predictor variables affect the two response variables with the assumption that there is a correlation between the response variables. This study aimed to obtain the best spline truncated bi-response nonparametric regression model on life expectancy data and the prevalence of underweight children in Indonesia in 2021. The data used comes from the Central Bureau of Statistics and the Indonesian Ministry of Health. The optimal knot point selection method uses the Generalized Cross Validation (GCV) method. The results showed that the best model formed was obtained using three-knot points based on a minimum GCV value of 22.77 and a coefficient of determination of 99.58%.

References

A. A. R. Fernandes, I. Nyoman Budiantara, B. W. Otok, and Suhartono, “Spline estimator for bi-responses nonparametric regression model for longitudinal data,” Appl. Math. Sci., vol. 8, no. 113–116, pp. 5653–5665, 2014, doi: 10.12988/ams.2014.47566.

T. Purnaraga, S. Sifriyani, and S. Prangga, “Regresi Nonparamaetrik Spline Pada Data Laju Pertumbuhan Ekonomi Di Kalimantan,” BAREKENG J. Ilmu Mat. dan Terap., vol. 14, no. 3, pp. 343–356, 2020, doi: 10.30598/barekengvol14iss3pp343-356.

A. B. Padatuan, S. Sifriyani, and S. Prangga, “Pemodelan Angka Harapan Hidup Dan Angka Kematian Bayi Di Kalimantan Dengan Regresi Nonparametrik Spline Birespon,” BAREKENG J. Ilmu Mat. dan Terap., vol. 15, no. 2, pp. 283–296, 2021, doi: 10.30598/barekengvol15iss2pp283-296.

Sifriyani, H. Ilmi, and Z. Mar’Ah, “Application of Nonparametric Geographically Weighted Spline Regression Model for Spatial Mapping of Open Unemployment Rate in Kalimantan,” J. Phys. Conf. Ser., vol. 2123, no. 1, 2021, doi: 10.1088/1742-6596/2123/1/012038.

S. Sifriyani, M. Rasjid, D. Rosadi, S. Anwar, R. D. Wahyuni, and S. Jalaluddin, “Spatial-Temporal Epidemiology of COVID-19 Using a Geographically and Temporally Weighted Regression Model,” Symmetry (Basel)., vol. 14, no. 4, 2022, doi: 10.3390/sym14040742.

M. D. Pasarella, S. Sifriyani, and F. D. T. Amijaya, “Nonparametrik Regression Model Estimation With the Fourier Series the Fourier Series Approach and Its Application To the Accumulative Covid-19 Data in Indonesia,” BAREKENG J. Ilmu Mat. dan Terap., vol. 16, no. 4, pp. 1167–1174, 2022, doi: 10.30598/barekengvol16iss4pp1167-1174.

S. P. Rifka Nurfiaza Zarkasi, Sifriyani, “IDENTIFIKASI FAKTOR-FAKTOR YANG MEMPENGARUHI MENGGUNAKAN REGRESI PANEL Identification of The Factors That Influence The Human Development Index In Kalimantan Using Panel Regression,” vol. 15, no. 2, pp. 277–282, 2021.

N. Chamidah, B. Lestari, and T. Saifudin, “Modeling of blood pressures based on stress score using least square spline estimator in bi-response non-parametric regression,” Int. J. Innov. Creat. Chang., vol. 5, no. 3, pp. 1200–1216, 2019.

K. Nakamura, S. Matsumura, and T. Mizutani, “Particle-to-surface frictional contact algorithm for material point method using weighted least squares,” Comput. Geotech., vol. 134, no. October 2020, p. 104069, 2021, doi: 10.1016/j.compgeo.2021.104069.

P. Dewanti, I. Nyoman Budiantara, and A. T. Rumiati, “Modelling of SDG’s Achievement in East Java Using Bi-responses Nonparametric Regression with Mixed Estimator Spline Truncated and Kernel,” J. Phys. Conf. Ser., vol. 1562, no. 1, pp. 0–11, 2020, doi: 10.1088/1742-6596/1562/1/012016.

A. Islamiyati, Fatmawati, and N. Chamidah, “Estimation of Covariance Matrix on Bi-Response Longitudinal Data Analysis with Penalized Spline Regression,” J. Phys. Conf. Ser., vol. 979, no. 1, 2018, doi: 10.1088/1742-6596/979/1/012093.

A. Islamiyati, A. Kalondeng, N. Sunusi, M. Zakir, and A. K. Amir, “Biresponse nonparametric regression model in principal component analysis with truncated spline estimator,” J. King Saud Univ. - Sci., vol. 34, no. 3, p. 101892, 2022, doi: 10.1016/j.jksus.2022.101892.

J. I. Martínez, E. M. Román, E. L. Alfaro, C. Grandi, and J. E. Dipierri, “Geographic altitude and prevalence of underweight, stunting and wasting in newborns with the INTERGROWTH-21st standard,” J. Pediatr. (Rio. J)., vol. 95, no. 3, pp. 366–373, 2019, doi: 10.1016/j.jped.2018.03.007.

I. P. De Ramos, A. H. Auchincloss, and U. Bilal, “Exploring inequalities in life expectancy and lifespan variation by race/ethnicity and urbanicity in the United States: 1990 to 2019,” SSM - Popul. Heal., vol. 19, no. September, p. 101230, 2022, doi: 10.1016/j.ssmph.2022.101230.

H. Y. Shin and H. T. Kang, “Recent trends in the prevalence of underweight, overweight, and obesity in Korean adults: The Korean National Health and Nutrition Examination Survey from 1998 to 2014,” J. Epidemiol., vol. 27, no. 9, pp. 413–419, 2017, doi: 10.1016/j.je.2016.08.014.

S. Syahrul, R. Kimura, A. Tsuda, T. Susanto, R. Saito, and F. Ahmad, “Prevalence of underweight and overweight among school-aged children and it’s association with children’s sociodemographic and lifestyle in Indonesia,” Int. J. Nurs. Sci., vol. 3, no. 2, pp. 169–177, 2016, doi: 10.1016/j.ijnss.2016.04.004.

R. K. Behl, B. D. Chaudhry, and K. Ramlila, “62201_0715078102_Artikel Journal annals of biology.”

F. Bianchi, G. Bianchi, and D. Song, “The long-term impact of the COVID-19 unemployment shock on life expectancy and mortality rates,” J. Econ. Dyn. Control, vol. 146, p. 104581, 2023, doi: 10.1016/j.jedc.2022.104581.

S. Sifriyani, “Simultaneous Hypothesis Testing of Multivariable Nonparametric Spline Regression in the GWR Model,” Int. J. Stat. Probab., vol. 8, no. 4, p. 32, 2019, doi: 10.5539/ijsp.v8n4p32.

A. I. R. Minum, P. A. M. Tirta, and M. Kota, “http://ejurnal.binawakya.or.id/index.php/MBI Vol.16 No.2 September 2021 Open Journal Systems,” vol. 16, no. 2, pp. 6427–6438, 2021.

Published
2023-12-19
How to Cite
[1]
A. Anisar, S. Sifriyani, and A. Dani, “ESTIMATION OF A BI-RESPONSE TRUNCATED SPLINE NONPARAMETRIC REGRESSION MODEL ON LIFE EXPECTANCY AND PREVALENCE OF UNDERWEIGHT CHILDREN IN INDONESIA”, BAREKENG: J. Math. & App., vol. 17, no. 4, pp. 2011-2022, Dec. 2023.
Section
Articles