MIXED ESTIMATORS OF TRUNCATED SPLINE-EPANECHNIKOV KERNEL ON NONPARAMETRIC REGRESSION AND ITS APPLICATIONS

  • Sifriyani Sifriyani Statistics Study Program, Faculty of Mathematics and Natural Sciences, Mulawarman University, Indonesia
  • Andrea Tri Rian Dani Statistics Study Program, Faculty of Mathematics and Natural Sciences, Mulawarman University, Indonesia
  • Meirinda Fauziyah Statistics Study Program, Faculty of Mathematics and Natural Sciences, Mulawarman University, Indonesia
  • Zakiyah Mar’ah Department of Statistics, Faculty of Mathematics and Natural Sciences, State Universiy of Makassar, Indonesia
Keywords: Espanechnikov Kernel, Health Sector, Mixed Estimator, Truncated Spline

Abstract

Research on innovations in the statistics and statistical computing program systems implemented in the health sector. The development of a mixed estimator model is an innovation of nonparametric regression analysis by combining two approaches in nonparametric regression, namely the truncated spline estimator and the Epanechnikov kernel. The urgency of this study is that there are often cases where there are different data patterns from each predictor variable. In addition, by using only one form of the estimator in estimating a multivariable regression curve, the result is that the estimator obtained will not match the data pattern. The research objective was to find a mixed estimator between the truncated spline and the Epanechnikov kernel and the estimator results were applied to Dengue Hemorrhagic Fever case data. The unit of observation is a province in Indonesia and This study relied on secondary data received from the Central Statistical Agency (BPS) and the Health Office. Based on the analysis results, it was found that the best model of nonparametric regression with a mixed estimator of the truncated spline and Epanechnikov Kernel is a model with 3 knots with a combination of variables. The coefficient of determination (R2) is 98.11%. We can conclude that the mixed estimator tends to follow actual data and represents a nonparametric regression model with a mixed estimator that can predict the number of Dengue Hemorrhagic Fever Cases in Indonesia

Downloads

Download data is not yet available.

References

I. Sriliana, I. N. Budiantara, and V. Ratnasari, “A Truncated Spline and Local Linear Mixed Estimator in Nonparametric Regression for Longitudinal Data and Its Application,” Symmetry (Basel), vol. 14, no. 12, p. 2687, Dec. 2022, doi: 10.3390/sym14122687.

Sifriyani, M. Y. Diu, Z. Mar’ah, D. Anggraini, and S. Jalaluddin, “Modeling of dengue hemorrhagic fever cases in AWS Hospital Samarinda using bi-responses nonparametric regression with estimator spline truncated,” Commun. Math. Biol. Neurosci., vol. 2023, p. Article-ID, 2023.

Sifriyani, I. N. Budiantara, S. H. Kartiko, and Gunardi, “A new method of hypothesis test for truncated spline nonparametric regression influenced by spatial heterogeneity and application,” in Abstract and Applied Analysis, Hindawi, 2018.

Sifriyani, A. T. R. Dani, M. Fauziyah, M. N. Hayati, S. Wahyuningsih, and S. Prangga, “Spline and kernel mixed estimators in multivariable nonparametric regression for dengue hemorrhagic fever model,” Commun. Math. Biol. Neurosci., vol. 2023, p. Article-ID, 2023.

G. Wahba, “Improper Priors, Spline Smoothing and the Problem of Guarding Against Model Errors in Regression,” Journal of the Royal Statistical Society: Series B (Methodological), vol. 40, no. 3, pp. 364–372, Jul. 1978, doi: 10.1111/j.2517-6161.1978.tb01050.x.

D. D. Cox and F. O’Sullivan, “Penalized Likelihood-type Estimators for Generalized Nonparametric Regression,” J Multivar Anal, vol. 56, no. 2, pp. 185–206, Feb. 1996, doi: 10.1006/jmva.1996.0010.

G. P. D. Sohibien, L. Laome, A. Choiruddin, and H. Kuswanto, “COVID-19 Pandemic’s Impact on Return on Asset and Financing of Islamic Commercial Banks: Evidence from Indonesia,” Sustainability, vol. 14, no. 3, p. 1128, Jan. 2022, doi: 10.3390/su14031128.

T. Purnaraga, S. Sifriyani, and S. Prangga, “Regresi Nonparamaetrik Spline Pada Data Laju Pertumbuhan Ekonomi Di Kalimantan,” BAREKENG: Jurnal Ilmu Matematika dan Terapan, vol. 14, no. 3, pp. 343–356, Oct. 2020, doi: 10.30598/barekengvol14iss3pp343-356.

B. W. Silverman, “Some Aspects of the Spline Smoothing Approach to Non-Parametric Regression Curve Fitting,” Journal of the Royal Statistical Society: Series B (Methodological), vol. 47, no. 1, pp. 1–21, Sep. 1985, doi: 10.1111/j.2517-6161.1985.tb01327.x.

N. Y. Adrianingsih, I. N. Budiantara, and J. D. T. Purnomo, “Mixture Model Nonparametric Regression and Its Application,” J Phys Conf Ser, vol. 1842, no. 1, p. 012044, Mar. 2021, doi: 10.1088/1742-6596/1842/1/012044.

Sifriyani, S. H. Kartiko and I. N. Budiantara, “Development of nonparametric geographically weighted regression using truncated spline approach.,” Songklanakarin Journal of Science & Technology, vol. 40, no. 4, 2018.

M. Bilodeau, “Fourier smoother and additive models,” Canadian Journal of Statistics, vol. 20, no. 3, pp. 257–269, Sep. 1992, doi: 10.2307/3315313.

A. B. Padatuan, S. Sifriyani, and S. Prangga, “Pemodelan Angka Harapan Hidup Dan Angka Kematian Bayi Di Kalimantan Dengan Regresi Nonparametrik Spline Birespon,” Barekeng: Jurnal Ilmu Matematika dan Terapan, vol. 15, no. 2, pp. 283–296, Jun. 2021, doi: 10.30598/barekengvol15iss2pp283-296.

M. D. Pasarella, S. Sifriyani, and F. D. T. Amijaya, “Nonparametrik Regression Model Estimation With The Fourier Series The Fourier Series Approach And Its Application To The Accumulative Covid-19 Data In Indonesia,” BAREKENG: Jurnal Ilmu Matematika dan Terapan, vol. 16, no. 4, pp. 1167–1174, Dec. 2022, doi: 10.30598/barekengvol16iss4pp1167-1174.

A. R. M. Sari, S. Sifriyani, and M. N. Huda, “Regression Nonparametric Spline Estimation On Blood Glucose Of Inpatients Diabetes Mellitus At Samarinda Hospital,” Barekeng: Jurnal Ilmu Matematika dan Terapan, vol. 17, no. 1, pp. 0147–0154, Apr. 2023, doi: 10.30598/barekengvol17iss1pp0147-0154.

M. A. Clyde and E. I. George, “Empirical Bayes estimation in wavelet nonparametric regression,” in Bayesian inference in wavelet-based models, Springer, 1999, pp. 309–322.

S. Barber and G. P. Nason, “Real Nonparametric Regression Using Complex Wavelets,” J R Stat Soc Series B Stat Methodol, vol. 66, no. 4, pp. 927–939, Nov. 2004, doi: 10.1111/j.1467-9868.2004.B5604.x.

C. Adam and I. Gijbels, “Local polynomial expectile regression,” Ann Inst Stat Math, vol. 74, no. 2, pp. 341–378, 2022.

S. E. Ahmed, D. Aydin, and E. Yilmaz, “Semiparametric Time-Series Model Using Local Polynomial: An Application on the Effects of Financial Risk Factors on Crop Yield,” Journal of Risk and Financial Management, vol. 15, no. 3, p. 141, Mar. 2022, doi: 10.3390/jrfm15030141.

N. A.-K. Fayadh and W. J. Hussain, “Comparison between the Local Polynomial Kernel Method and cubic spline to Estimating Time-Varying Coefficients Model,” Wasit Journal of Pure sciences, vol. 1, no. 3, pp. 105–114, 2022.

I. N. Budiantara, V. Ratnasari, M. Ratna, and I. Zain, “The combination of spline and kernel estimator for nonparametric regression and its properties,” Applied Mathematical Sciences, vol. 9, pp. 6083–6094, 2015, doi: 10.12988/ams.2015.58517.

I. N. Budiantara et al., “Modeling Percentage Of Poor People In Indonesia Using Kernel And Fourier Series Mixed Estimator In Nonparametric Regression.,” Investigacion Operacional, vol. 40, no. 4, pp. 538–551, 2019.

A. T. R. Dani, V. Ratnasari, and I. N. Budiantara, “Optimal Knots Point and Bandwidth Selection in Modeling Mixed Estimator Nonparametric Regression,” in IOP Conference Series: Materials Science and Engineering, IOP Publishing, 2021, p. 012020.

Sifriyani, H. Ilmi, and Z. Mar’ah, “Application of Nonparametric Geographically Weighted Spline Regression Model for Spatial Mapping of Open Unemployment Rate in Kalimantan,” in Journal of Physics: Conference Series, IOP Publishing, 2021, p. 012038.

Sifriyani, A. R. M. Sari, A. T. R. Dani, and S. Jalaluddin, “Bi-response truncated spline nonparametric regression with optimal knot point selection using generalized cross-validation in diabetes mellitus patient’s blood sugar levels,” Commun. Math. Biol. Neurosci., vol. 2023, p. Article-ID, 2023.

I. W. Sudiarsa, I. N. Budiantara, Suhartono, and S. W. Purnami, “Combined estimator Fourier series and spline truncated in multivariable nonparametric regression,” Applied Mathematical Sciences, vol. 9, pp. 4997–5010, 2015, doi: 10.12988/ams.2015.55394.

Sifriyani, F. H. Susanty, “Evaluation of forest productivity and governance on the preservation of tropical rain forests in Kalimantan using the NGWR-TS nonparametric geospatial method.,” Eurasian J Biosci, vol. 13, no. 2, 2019.

M. A. D. Octavanny, I. N. Budiantara, H. Kuswanto, and D. P. Rahmawati, “A New Mixed Estimator in Nonparametric Regression for Longitudinal Data,” Journal of Mathematics, vol. 2021, pp. 1–12, Nov. 2021, doi: 10.1155/2021/3909401.

S. Sifriyani and R. Hidayat, “Application of nonparametric truncated spline regression on infant mortality rate in Kalimantan,” in AIP Conference Proceedings, AIP Publishing, 2023.

Published
2023-12-19
How to Cite
[1]
S. Sifriyani, A. Dani, M. Fauziyah, and Z. Mar’ah, “MIXED ESTIMATORS OF TRUNCATED SPLINE-EPANECHNIKOV KERNEL ON NONPARAMETRIC REGRESSION AND ITS APPLICATIONS”, BAREKENG: J. Math. & App., vol. 17, no. 4, pp. 2023-2032, Dec. 2023.