ANALISIS FAKTOR YANG MEMPENGARUHI STATUS PENERIMAAN BERAS KELUARGA MISKIN MENGGUNAKAN REGRESI LOGISTIK BINER DI KECAMATAN LANGSA BARAT

  • Amelia Amelia Universitas Samudra
  • Fitra Mulyani Universitas Samudra
  • Ulya Nabilla Universitas Samudra
Keywords: Raskin, Binary Logistic Regression, District West Langsa

Abstract

Poverty is an inability to meet basic needs measured by expenditure, including rice consumption. Based on data from the Central Statistics Agency (BPS), as much as 95% of Indonesia's population consumes rice as the main food, with an average rice consumption of 102 kg/person/ year (BPS, 2013). Furthermore, BPS stated that almost 1/4 of them or around 25.95 million people were included in the category of the poor population as of March 2018. So the government made a policy to tackle the problem through the program of giving poor family rice (Raskin), namely subsidized rice assistance to households poor. However, in the implementation of the Raskin program, there was a deviation of around 40% of Indonesia's population with a middle-upper social-economic status receiving Raskin and 12.5% ​​of the population with a socio-economic status upon receiving Raskin. Therefore this study aims to analyze the significant factors that affect the status of rice in poor families using binary logistic regression analysis. The location of the study was conducted in the District of West Langsa because the district was one of the districts receiving the most Raskin in the City of Langsa. The data used in this study are primary data and secondary data. The results showed that the factors influencing the status of Raskin's acceptance were education level, floor type, fuel type, food expenses, and frequency of purchasing new clothes with prediction classification prediction of 72.2%.

Downloads

Download data is not yet available.

References

Y. Tampil, H. Komaliq, and Y. Langi, “Analisis Regresi Logistik Untuk Menentukan Faktor-Faktor Yang Mempengaruhi Indeks Prestasi Kumulatif (IPK) Mahasiswa FMIPA Universitas Sam Ratulangi Manado,†d’CARTESIAN, vol. 6, no. 2, p. 56, 2017, doi: 10.35799/dc.6.2.2017.17023.

T. Atika, “Evaluasi Pelaksanaan Program Beras untuk Keluarga Miskin di Kelurahan Tanjung Marulak Kecamatan Rambutan Kota Tebing Tinggi Evaluation of Implementation of Rice for Poor Family Program in Kelurahan Tanjung Marulak Rambutan Subdistrict ?? Tebing Tinggi,†J. Pemberdaya. Komunitas, vol. 14, no. 1, pp. 3–9, 2016.

Y. Pujowati, “Implementasi Kebijakan Beras Miskin (RASKIN) DI Kecamatan Tanjunganom Kabupaten Nganjuk (Studi Deskriptif Pada Kelurahan Sumberkepuh),†Dialekt. J. Ekon. dan Ilmu Sos., vol. 2, no. 1, pp. 121–136, 2017, doi: 10.36636/dialektika.v2i1.237.

I. Ramadhani, Faiz dan Zain, “Analisis Regresi Logistik Biner Untuk Mengindentifikasi Faktor-Faktor Yang Mempengaruhi Status Penerimaan Beras Keluarga Miskin (Raskin) di Kecamatan Gunung Anyar,†2014.

P. U. Raskin, Keputusan menteri koordinator bidang kesejahteraan rakyat nomor 54 tahun 2014. 2014.

M. Hismawati and H. Hardiyan, “Pengambilan Keputusan Dalam Penerima Bantuan Raskin Dengan Metode Simple Additive Weigthing (SAW),†Swabumi, vol. 8, no. 1, pp. 74–77, 2018, doi: 10.31294/swabumi.v6i2.4557.

C. Fadlan, S. Ningsih, and A. P. Windarto, “Penerapan Metode Naive Bayes Dalam Klasifikasi Kelayakan Keluarga Penerima Beras Rastra,†J. Tek. Inform. Musirawas, vol. 3, no. 1, pp. 1–8, 2018, doi: 10.32767/jutim.v3i1.286.

H. Y. Safitri Daruyani, Yuciana Wilandari, “Faktor-faktor yang mempengaruhi indeks prestasi mahasiswa fsm universitas diponegoro semaster pertama dengan motode regresi logistik biner,†Pros. Semin. Nas. Stat., 2013.

F. A. Novianti and S. W. Purnami, “Analisis Diagnosis Pasien Kanker Payudara Menggunakan Regresi Logistik dan Support Vector Machine (SVM) Berdasarkan Hasil Mamografi,†J. SAINS dan Seni ITS, 2012.

S. Utomo, “Model Regresi Logistik Untuk Menunjukkan Pengaruh Pendapatan Per Kapita, Tingkat Pendidikan, dan Status Pekerjaan Terhadap Status Gizi Masyarakat Kota Surakarta,†2009.

G. Suwardika, “Pengelompokan Dan Klasifikasi Pada Data Hepatitis Dengan Menggunakan Support Vector Machine (SVM), Classification And Regression Tree (Cart) Dan Regresi Logistik Biner,†J. Educ. Res. Eval., vol. 1, no. 3, pp. 183–191, 2017.

D. W. Hosmer and S. Lemeshow, Applied Logistic Regression. 2000.

I. Noviana et al., “Pemodelan Resiko Penyakit Pneumonia pada Balita di Jawa Timur Menggunakan Regresi Logistik Biner Stratifikasi,†J. SAINS DAN SENI POMITS, vol. 2, no. 2, pp. 225–230, 2015.

Published
2020-06-01
How to Cite
[1]
A. Amelia, F. Mulyani, and U. Nabilla, “ANALISIS FAKTOR YANG MEMPENGARUHI STATUS PENERIMAAN BERAS KELUARGA MISKIN MENGGUNAKAN REGRESI LOGISTIK BINER DI KECAMATAN LANGSA BARAT”, BAREKENG: J. Math. & App., vol. 14, no. 2, pp. 175-186, Jun. 2020.

Most read articles by the same author(s)