MODELING AND SEGMENTATION OF FACTORS AFFECTING HUMAN DEVELOPMENT IN ISLANDS OF JAVA USING FIMIX PLS METHOD WITH MEDIATION EFFECT
Abstract
Human development is a key indicator used to assess the quality of a country's human resources. Although Indonesia's HDI has experienced a significant increase of 75.02 in 2024, inequality is still a pressing issue, especially in terms of gender representation in the workforce. This study aims to identify the influence of poverty, economic, health, employment and education factors on human development in Java Island by considering gender equality as a mediating variable. The data used in the study is limited to 119 districts/cities in Java Island and sourced from BPS publications, the Health Office and the Education Office. The novelty of this study lies in the use of the Finite Mixture Partial Least Square (FIMIX-PLS) approach with mediation effects which is rarely applied in human development research in Indonesia, as well as allowing the identification of latent population heterogeneity and region-based segmentation. The results of this method reveal two distinct district/city segments in Java, with Segment 1 dominated by the variables in this study that have significant direct and indirect effects through the mediation of gender equality on human development, while Segment 2 has characteristics that emphasize the effect of gender equality. Given these differences in characteristics, it is important that contextual and regional segmentation-based development policies are designed by local and central governments. Statistical segmentation approaches such as FIMIX-PLS make a significant contribution to more targeted policy making. By changing the type of intervention according to specific problems, the government can allocate resources more effectively. This supports the achievement of SDG-10 in reducing inequality.
Downloads
References
Badan Pusat Statistik, “INDEKS PEMBANGUNAN MANUSIA 2020,” Jakarta, 2021.
M. Ul Haq, REFLECTIONS ON HUMAN DEVELOPMENT. Oxford university Press, 1995. Doi: https://doi.org/10.1093/oso/9780195101911.001.0001
United Nations Development Programme, “HUMAN DEVELOPMENT INSIGHTS,” Human Development Reports. Accessed: Feb. 18, 2025. [Online]. Available: https://hdr.undp.org/data-center/country-insights#/ranks
United Nations Development Programme, “HASIL TEMUAN PROGRAM PEMBANGUNAN PBB: NEGARA-NEGARA MAJU CAPAI REKOR PEMBANGUNAN MANUSIA, NAMUN SETENGAH DARI NEGARA-NEGARA BERKEMBANG ALAMI KEMUNDURAN.” Accessed: Feb. 06, 2025. [Online]. Available: https://www.undp.org/id/indonesia/press-releases/hasil-temuan-program-pembangunan-pbb-negara-negara-maju-capai-rekor-pembangunan-manusia-namun-setengah-dari-negara-negara
United Nations, “REDUCE INEQUALITY WITHIN AND AMONG COUNTRIES. DEPARTMENT OF ECONOMIC SOCIAL AFFAIRS SUSTAINABLE,” United Nations. Accessed: Feb. 06, 2025. [Online]. Available: https://sdgs.un.org/goals/goal11
E. G. Tampubolon, M. Irvan, and D. Hartono, “DETERMINAN PERTUMBUHAN EKONOMI KABUPATEN/KOTA PROVINSI JAWA TIMUR TAHUN 2014-2020,” JABE (Journal of Applied Business and Economic), vol. 9, no. 1, pp. 68–80, 2022. Doi: https://doi.org/10.30998/jabe.v9i1.14711
D. Hartono, “PENTINGNYA PEMBANGUNAN DAN PEMBERDAYAAN GENDER DALAM RANGKA UPAYA MENDUKUNG PEMBANGUNAN MANUSIA PROVINSI DKI JAKARTA,” Jurnal Mirai Management, vol. 8, no. 1, pp. 398–404, 2023.
M. D. Wagho, “MODEL PERSAMAAN SIMULTAN UNTUK ANALISIS FAKTOR-FAKTOR YANG MEMPENGARUHI PERSENTASE KEMISKINAN DAN INDEKS PEMBANGUNAN MANUSIA DI PROVINSI JAWA TIMUR,” Institut Sains & Teknologi AKPRIND Yogyakarta, Yogyakarta, 2021.
T. M. Sapaat, A. L. C. P. Lapian, and S. Y. L. Tumangkeng, “ANALISIS FAKTOR-FAKTOR YANG MEMPENGARUHI INDEKS PEMBANGUNAN MANUSIA DI PROVINSI SULAWESI UTARA TAHUN (2005-2019),” Jurnal Berkala Ilmiah Efisiensi, vol. 20, no. 03, 2020.
M. A. Budiman and N. Cahyani, “PEMODELAN REGRESI LOGISTIK ORDINAL PADA INDEKS PEMBANGUNAN MANUSIA (IPM) DI JAWA TIMUR TAHUN 2020,” Jurnal Statistika Dan Komputasi, vol. 1, no. 2, pp. 64–73, 2022.doi: https://doi.org/10.32665/statkom.v1i2.1169
J. Wang and X. Wang, STRUCTURAL EQUATION MODELING: APPLICATIONS USING MPLUS. John Wiley & Sons, 2019. Doi: https://doi.org/10.1002/9781119422730
I. Ghozali, STRUCTURAL EQUATION MODELING: METODE ALTERNATIF DENGAN PARTIAL LEAST SQUARES (PLS). Semarang: Badan Penerbit Universitas Diponegoro, 2014.
A. Pariesti and U. R. Christa, “PENGARUH KOMPETENSI DAN GAYA KEPEMIMPINAN TRANSFORMASIONAL TERHADAP KINERJA PEGAWAI DENGAN MOTIVASI SEBAGAI VARIABEL INTERVENING PADA KANTOR INSPEKTORAT KABUPATEN KATINGAN,” Journal of Environment and management, vol. 3, no. 1, pp. 35–45, 2022.doi: https://doi.org/10.37304/jem.v3i1.4284
I. Ghozal, PARTIAL LEAST SQUARES KONSEP, TEKNIK, DAN APLIKASI MENGGUNAKAN PROGRAM SMARTPLS 3.2.9 UNTUK PENELITIAN EMPIRIS. Semarang: Badan Penerbit Universitas Diponegoro, 2021.
D. S. Vanisa, T. R. Rahmanita, E. Ana, and A. Kurniawan, “PROVINCIAL SEGMENTATION IN INDONESIA: EXPLORING FACTORS INFLUENCING EDUCATION WITH SEM-PLS METHOD, INCORPORATING MODERATION EFFECTS AND FIMIX-PLS APPROACH,” BAREKENG: Jurnal Ilmu Matematika dan Terapan, vol. 18, no. 3, pp. 1955–1962, 2024.doi: https://doi.org/10.30598/barekengvol18iss3pp1955-1962
R. R. Nuryanti and T. Soebagijo, “SEM-PLS UNTUK ANALISIS STRUKTUR KEMISKINAN PADA MASA PANDEMI COVID-19,” in Seminar Nasional Official Statistics, 2021, pp. 195–203.doi: https://doi.org/10.34123/semnasoffstat.v2021i1.836
E. D. Anggita, A. Hoyyi, and A. Rusgiyono, “ANALISIS STRUCTURAL EQUATION MODELLING PENDEKATAN PARTIAL LEAST SQUARE DAN PENGELOMPOKAN DENGAN FINITE MIXTURE PLS (FIMIX-PLS)(STUDI KASUS: KEMISKINAN RUMAH TANGGA DI INDONESIA 2017),” Jurnal Gaussian, vol. 8, no. 1, pp. 35–45, 2019.doi: https://doi.org/10.14710/j.gauss.v8i1.26620
M. Abdullah, “METODE PENELITIAN KUANTITATIF,” 2015, Aswaja pressindo.
H. A. Sandri, “PEMODELAN NIAT PEMBELIAN KEMBALI PADA PELANGGAN MARKETPLACE BERDASARKAN METODE STRUCTURAL EQUATION MODELING DENGAN PENDEKATAN PARTIAL LEAST SQUARE (STUDI KASUS DI MARKETPLACE SHOPEE),” 2021.
S. Haryono and P. Wardoyo, “STRUCTURAL EQUATION MODELING,” Bekasi: PT Intermedia Personalia Utama, 2012.
J. F. Hair, G. T. Hult, C. M. Ringle, and M. Sarstedt, A PRIMER ON PARTIAL LEAST SQUARES STRUCTURAL EQUATION MODELLING (PLS-SEM). SAGE Publications, Inc., 2014.
I. Ghozali, MODEL PERSAMAAN STRUKTURAL KONSEP DAN APLIKASI DENGAN PROGRAM AMOS 22 UPDATE BAYESIAN SEM. Semarang: Badan Penerbit Universitas Diponegoro, 2011.
G. S. Trujillo, “PATHMOX APPROACH: SEGMENTATION TREES IN PARTIAL LEAST SQUARES PATH MODELING,” Universitat Politècnica de Catalunya (UPC), 2009.
S. Nurhalizah, G. Kholijah, and Z. Gusmanely, “ANALISIS STRUCTURAL EQUATION MODELING PARTIAL LEAST SQUARE PADA KINERJA PEGAWAI PT. BANK PEMBANGUNAN DAERAH JAMBI,” Indonesian Journal of Applied Statistics, vol. 6, no. 2, pp. 125–139, 2024.doi: https://doi.org/10.13057/ijas.v6i2.78921
C. M. Ringle, M. Sarstedt, and E. A. Mooi, “RESPONSE-BASED SEGMENTATION USING FINITE MIXTURE PARTIAL LEAST SQUARES: THEORETICAL FOUNDATIONS AND AN APPLICATION TO AMERICAN CUSTOMER SATISFACTION INDEX DATA,” in Data mining: Special issue in annals of information systems, Springer, 2009, pp. 19–49. Doi: https://doi.org/10.1007/978-1-4419-1280-0_2
I. N. Afifah, “ANALISIS STRUCTURAL EQUATION MODEL (SEM) DENGAN FINITE MIXTURE PARTIAL LEAST SQUARES (FIMIX-PLS),” Penguatan Peran Matematika Dan Pendidikan Matematika Untuk Indonesia Yang Lebih Baik, November, pp. 978–979, 2013.
M. Sarstedt, J.-M. Becker, C. M. Ringle, and M. Schwaiger, “UNCOVERING AND TREATING UNOBSERVED HETEROGENEITY WITH FIMIX-PLS: WHICH MODEL SELECTION CRITERION PROVIDES AN APPROPRIATE NUMBER OF SEGMENTS?,” Schmalenbach Business Review, vol. 63, pp. 34–62, 2011.doi: https://doi.org/10.1007/BF03396886
E. E. Rigdon, C. M. Ringle, and M. Sarstedt, “STRUCTURAL MODELING OF HETEROGENEOUS DATA WITH PARTIAL LEAST SQUARES,” Review of marketing research, pp. 255–296, 2010. Doi: https://doi.org/10.1108/S1548-6435(2010)0000007011
K. P. Burnham and D. R. Anderson, “MULTIMODEL INFERENCE: UNDERSTANDING AIC AND BIC IN MODEL SELECTION,” Sociol Methods Res, vol. 33, no. 2, pp. 261–304, 2004.doi: https://doi.org/10.1177/0049124104268644
C. Hahn, M. D. Johnson, A. Herrmann, and F. Huber, “CAPTURING CUSTOMER HETEROGENEITY USING A FINITE MIXTURE PLS APPROACH,” Schmalenbach Business Review, vol. 54, pp. 243–269, 2002. Doi: https://doi.org/10.1007/BF03396655
J. S. Muthmaina, “THE FEMININOMENON OF INEQUALITY: A DATA-DRIVEN ANALYSIS AND CLUSTER PROFILING IN INDONESIA,” arXiv preprint arXiv:2412.00012, 2024.
A. Rahmadian, V. Hannisa, N. R. Alifa, M. Zaky, and Y. F. Rahmah, “A COMPREHENSIVE ANALYSIS OF GENDER DISPARITIES IN INDONESIAN HUMAN DEVELOPMENT USING MACHINE LEARNING TECHNIQUES,” in International Conference on Islamic Economics (ICIE), 2024, pp. 691–696.
Copyright (c) 2025 Muhammad Rosyid Ridho Az Zuhro, Ardi Kurniawan, Dita Amelia, Idrus Syahzaqi

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this Journal agree to the following terms:
- Author retain copyright and grant the journal right of first publication with the work simultaneously licensed under a creative commons attribution license that allow others to share the work within an acknowledgement of the work’s authorship and initial publication of this journal.
- Authors are able to enter into separate, additional contractual arrangement for the non-exclusive distribution of the journal’s published version of the work (e.g. acknowledgement of its initial publication in this journal).
- Authors are permitted and encouraged to post their work online (e.g. in institutional repositories or on their websites) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published works.




1.gif)


