SPATIAL EXTRAPOLATION OF MALARIA CASES IN CENTRAL PAPUA USING CO-KRIGING BASED ON RAINFALL AND OBSERVATIONAL DATA FROM PAPUA PROVINCE
Abstract
Malaria is an infectious disease that remains a significant health burden in Indonesia, particularly in Papua Province. This province has the highest malaria incidence rate nationally, influenced by various environmental factors such as rainfall. This study aims to estimate the number of malaria cases in districts/cities of Central Papua Province that do not have direct observation data, by utilizing the Co-Kriging method based on rainfall as a secondary variable and malaria cases as a primary variable from Papua Province. The secondary data used in this study were obtained from the official website of the Badan Pusat Statistik (BPS) of Papua Province, which includes the number of malaria cases in districts/cities as well as rainfall data from meteorological stations in the same region, collected in 2023. Three types of semivariogram models-spherical, exponential, and gaussian-were used to select the best model through statistical evaluation using Mean Squared Error (MSE) and Mean Absolute Percentage Error (MAPE). The results showed that the Gaussian semivariogram model provided the most optimal prediction results with an MSE of 10.895 and an MAPE of 4.67%. The estimates show that malaria cases in Central Papua are relatively uniform, with the highest incidence in Puncak Jaya district (219/1000 population) and the lowest in Mimika district (211/1,000 population). This approach is expected to be an important tool in spatially based disease planning and control and support the achievement of Sustainable Development Goals (SDGs), especially goals 3 (Good Health and Well-Being) and 13 (Climate Action).
Downloads
References
F. Adugna, M. Wale, E. Nibret, and Z. Ameha, “DENSITY AND SPECIES COMPOSITION OF ANOPHELES MOSQUITO LARVAE ALONG LAKE TANA, NORTHWEST ETHIOPIA,” Sci. African, vol. 27, no. June 2024, p. e02605, 2025. doi: https://doi.org/10.1016/j.sciaf.2025.e02605.
World Health Organization, “WORLD MALARIA REPORT 2023,” 2023. [Online]. Available: https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2023
Kementerian Kesehatan Republik Indonesia, “PROFIL KESEHATAN,” 2023.
E. E. Nurmala, “DINAMIKA PERUBAHAN UNSUR IKLIM (SUHU, KELEMBABAN DAN CURAH HUJAN) DAN KEJADIAN MALARIA PADA PENDUDUK PANDEGLANG,” J. Dunia Kesmas, vol. 6, no. 2, pp. 63–69, 2017.
S. Sulasmi, D. E. Setyaningtyas, A. Rosanji, and N. Rahayu, “PENGARUH CURAH HUJAN, KELEMBABAN, DAN TEMPERATUR TERHADAP PREVALENSI MALARIA DI KABUPATEN TANAH BUMBU KALIMANTAN SELATAN,” J. Heal. Epidemiol. Commun. Dis., vol. 3, no. 1, pp. 22–27, 2017. doi: https://doi.org/10.22435/jhecds.v3i1.1794.
A. Y. Baidjoe et al., “FACTORS ASSOCIATED WITH HIGH HETEROGENEITY OF MALARIA AT FINE SPATIAL SCALE IN THE WESTERN KENYAN HIGHLANDS,” Malar. J., vol. 15, no. 1, pp. 1–9, 2016. doi: https://doi.org/10.1186/s12936-016-1362-y.
T. Mukhopadhyay, S. Chakraborty, S. Dey, S. Adhikari, and R. Chowdhury, “A CRITICAL ASSESSMENT OF KRIGING MODEL VARIANTS FOR HIGH-FIDELITY UNCERTAINTY QUANTIFICATION IN DYNAMICS OF COMPOSITE SHELLS,” Arch Comput. Methods Eng, vol. 24, no. 3, pp. 495–518, 2017. doi: https://doi.org/10.1007/s11831-016-9178-z.
T. Saifudin, A. Faiza, L. Puspasari, and Z. ’Ilmatun Nurrohmah, “ESTIMATING THE CONCENTRATION OF NO2 WITH THE COKRIGING METHOD IN THE CAPITAL CITY OF JAKARTA,” BAREKENG J. Ilmu Mat. dan Terap., vol. 17, no. 4, pp. 1985–1996, 2023. doi: https://doi.org/10.30598/barekengvol17iss4pp1985-1996.
Ishaq, “EFEKTIVITAS ORDINARY COKRIGING DAN KRIGING UNTUK KARAKTERISASI POTENSI MANIFESTASI PANAS BUMI,” J. INTEKNA, vol. 18, no. 2, pp. 67–131, 2018, [Online]. Available: http://ejurnal.poliban.ac.id/index.php/intekna/issue/archive
A. P. Nugraha, A. Granitio Irwan, and L. Nugraha, “PERBANDINGAN GEOSTATISTIK METODE KRIGING DAN CO-KRIGING MENGGUNAKAN ESTIMASI POINT KRIGING,” vol. 2020, pp. 177–181, 2020.
D. Payares-Garcia, F. Osei, J. Mateu, and A. Stein, “A POISSON COKRIGING MODELING OF CO-CIRCULATION OF MOSQUITO-BORNE DISEASES IN COLOMBIA,” Environ. Ecol. Stat., vol. 32, no. 1, pp. 149–173, 2025. doi: https://doi.org/10.1007/s10651-025-00646-w.
K. Sheikhzadeh et al., “PREDICTING MALARIA TRANSMISSION RISK IN ENDEMIC AREAS OF IRAN: A MULTILEVEL MODELING USING CLIMATE AND SOCIOECONOMIC INDICATORS,” Iran. Red Crescent Med. J., vol. 19, no. 4, 2017. doi: https://doi.org/10.5812/ircmj.45132.
Republik Indonesia, “UNDANG-UNDANG NOMOR 15 TAHUN 2022 TENTANG PEMBENTUKAN PROVINSI PAPUA TENGAH,” Jakarta, 2022. [Online]. Available: https://peraturan.bpk.go.id/Details/217798/uu-no-15-tahun-2022
BPS Provinsi Papua, PROVINSI PAPUA DALAM ANGKA 2025. 2025.
R Core Team, “R: A LANGUAGE AND ENVIRONMENT FOR STATISTICAL COMPUTING,” Vienna, Austria, 2023. [Online]. Available: https://www.r-project.org/
Python Software Foundation, “THE PYTHON LANGUAGE REFERENCE.” [Online]. Available: https://docs.python.org/3/reference/
J. A. Vargas-Guzmán and T. C. J. Yeh, “SEQUENTIAL KRIGING AND COKRIGING: TWO POWERFUL GEOSTATISTICAL APPROACHES,” Stoch. Environ. Res. Risk Assess., vol. 13, no. 6, pp. 416–435, 1999. doi: https://doi.org/10.1007/s004770050047.
M. G. Genton and W. Kleiber, “CROSS-COVARIANCE FUNCTIONS FOR MULTIVARIATE GEOSTATISTICS,” Stat. Sci., vol. 30, no. 2, pp. 147–163, 2015. doi: https://doi.org/10.1214/14-STS487.
E. P. Putra, R. Goejantoro, and S. Suyitno, “PENAKSIRAN KANDUNGAN KLORIDA DI SUNGAI MAHAKAM WILAYAH SAMARINDA TAHUN 2017 DENGAN METODE COKRIGING,” Eksponensial, vol. 11, no. 2, pp. 175–180, 2020. doi: https://doi.org/10.30872/eksponensial.v11i2.661.
N. Chamidah et al., “PREDICTION AND ANALYSIS OF THE NUMBER OF ARI CASES BASED ON PM 2 . 5 CONCENTRATION WITH CO-KRIGING APPROACH,” vol. 8, no. 1, pp. 1–11, 2025. doi: https://doi.org/10.12962/j27213862.v8i1.20512.
T. C. Bailey and A. Gatrell, INTERACTIVE SPATIAL DATA ANALYSIS. Pearson Education Limited, 1995.
M. A. Maricar, “ANALISA PERBANDINGAN NILAI AKURASI MOVING AVERAGE DAN EXPONENTIAL SMOOTHING UNTUK SISTEM PERAMALAN PENDAPATAN PADA PERUSAHAAN XYZ,” J. Sist. dan Inform., vol. 13, pp. 37–46, 2019.
M. M. Kifle, T. T. Teklemariam, A. M. Teweldeberhan, E. H. Tesfamariam, A. K. Andegiorgish, and E. Azaria Kidane, “MALARIA RISK STRATIFICATION AND MODELING THE EFFECT OF RAINFALL ON MALARIA INCIDENCE IN ERITREA,” J. Environ. Public Health, vol. 2019, 2019. doi: https://doi.org/10.1155/2019/7314129.
N. Matsushita et al., “DIFFERENCES OF RAINFALL–MALARIA ASSOCIATIONS IN LOWLAND AND HIGHLAND IN WESTERN KENYA,” Int. J. Environ. Res. Public Health, vol. 16, no. 19, pp. 1–13, 2019. doi: https://doi.org/10.3390/ijerph16193693.
A. Noé, S. I. Zaman, M. Rahman, A. K. Saha, M. M. Aktaruzzaman, and R. J. Maude, “MAPPING THE STABILITY OF MALARIA HOTSPOTS IN BANGLADESH FROM 2013 TO 2016,” Malar. J., vol. 17, no. 1, pp. 1–21, 2018. doi: https://doi.org/10.1186/s12936-018-2405-3.
D. Dabaro, Z. Birhanu, A. Negash, D. Hawaria, and D. Yewhalaw, “EFFECTS OF RAINFALL, TEMPERATURE AND TOPOGRAPHY ON MALARIA INCIDENCE IN ELIMINATION TARGETED DISTRICT OF ETHIOPIA,” Malar. J., vol. 20, no. 1, pp. 1–10, 2021. doi: https://doi.org/10.1186/s12936-021-03641-1.
H. Hasyim et al., “SPATIAL MODELLING OF MALARIA CASES ASSOCIATED WITH ENVIRONMENTAL FACTORS IN SOUTH SUMATRA, INDONESIA,” Malar. J., vol. 17, no. 1, pp. 1–15, 2018. doi: https://doi.org/10.1186/s12936-018-2230-8.
W. Hanandita and G. Tampubolon, “GEOGRAPHY AND SOCIAL DISTRIBUTION OF MALARIA IN INDONESIAN PAPUA: A CROSS-SECTIONAL STUDY,” Int. J. Health Geogr., vol. 15, no. 1, pp. 1–15, 2016. doi: https://doi.org/10.1186/s12942-016-0043-y.
O. I. Hutasoit, “ECOLOGICAL STUDY OF CLIMATE EFFECTS ON MALARIA INCIDENCE IN JAYAPURA INDONESIA 2010-2022,” Biosci. Med. J. Biomed. Transl. Res., vol. 7, no. 5, pp. 3332–3340, 2023. doi: https://doi.org/10.37275/bsm.v7i5.826.
H. Shimazaki and S. Shinomoto, “A METHOD FOR SELECTING THE BIN SIZE OF A TIME HISTOGRAM,” Neural Comput., vol. 19, no. 6, pp. 1503–1527, 2007. doi: https://doi.org/10.1162/neco.2007.19.6.1503.
M. P. Lucas et al., “OPTIMIZING AUTOMATED KRIGING TO IMPROVE SPATIAL INTERPOLATION OF MONTHLY RAINFALL OVER COMPLEX TERRAIN,” J. Hydrometeorol., vol. 23, no. 4, pp. 561–572, 2022. doi: https://doi.org/10.1175/JHM-D-21-0171.1.
Z. Arétouyap, P. Njandjock Nouck, R. Nouayou, F. E. Ghomsi Kemgang, A. D. Piépi Toko, and J. Asfahani, “LESSENING THE ADVERSE EFFECT OF THE SEMIVARIOGRAM MODEL SELECTION ON AN INTERPOLATIVE SURVEY USING KRIGING TECHNIQUE,” Springerplus, vol. 5, no. 1, 2016. doi: https://doi.org/10.1186/s40064-016-2142-4.
A. Hajjah and Y. N. Marlim, “ANALISIS ERROR TERHADAP PERAMALAN DATA PENJUALAN,” Techno.Com, vol. 20, no. 1, pp. 1–9, 2021. doi: https://doi.org/10.33633/tc.v20i1.4054.
D. A. M. Atok and S. S. Chai, “ADDRESSING OVERFITTING AND OVERESTIMATION CHALLENGES IN LANDSLIDE SUSCEPTIBILITY MODELING: A CASE STUDY OF PENANG ISLAND, MALAYSIA,” Nat. Hazards, vol. 121, no. 11, pp. 13577–13604, 2025. doi: https://doi.org/10.1007/s11069-025-07329-6.
Copyright (c) 2026 Toha Saifudin, Nur Chamidah, Azizah Atsariyyah Zhafira, Gabriella Agnes Budijono, Rivaldi Sihite, Mochamad Baihaqi, R. Arya Januarta

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this Journal agree to the following terms:
- Author retain copyright and grant the journal right of first publication with the work simultaneously licensed under a creative commons attribution license that allow others to share the work within an acknowledgement of the work’s authorship and initial publication of this journal.
- Authors are able to enter into separate, additional contractual arrangement for the non-exclusive distribution of the journal’s published version of the work (e.g. acknowledgement of its initial publication in this journal).
- Authors are permitted and encouraged to post their work online (e.g. in institutional repositories or on their websites) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published works.




1.gif)


