DETEKSI PENYALAHGUNAAN NARKOBA DENGAN METODE TWIN BOUNDED SVM

Keywords: twin bounded, SVM, drugs, detection

Abstract

Twin Bounded SVM (TB-SVM) is an improvement of the Twin SVM method and has advantages in classification problems compared to standard SVM. In this research, linear TB-SVM and nonlinear TB-SVM methods will be applied to detect drug use based on 23 symptoms experienced. The training and testing data is divided into three partition data schemes (60/40 scheme, 70/30 scheme and 80/20 scheme) in order to determine the best level of accuracy that can be obtained. The test results show that the nonlinear TB-SVM with the RBF kernel has a better accuracy rate than the linear TB-SVM, that is 80% at 60/40 scheme, 90% at 70/30 scheme, and 95% at 80/20 scheme.

Downloads

Download data is not yet available.

References

C. J. Kiaking, “Penyalahgunaan Narkotika Menurut Hukum Pidana dan Undang-Undang Nomor 35 Tahun 2009 Tentang Narkotika”, LEX CRIMEN, vol.6, no.1, Januari 2017

D. P. Pangrestu dan N. Indriani Widiastuti, “Pembangunan Sistem Pendeteksi Penyalahgunaan Narkoba Menggunakan Algoritma Jaringan Syaraf Tiruan Metode Backpropagation”, Jurnal Ilmiah Komputer dan Informatika (KOMPUTA), vol.3, no.1, pp27-23, Maret 2014

B. P. Tomasouw dan M. I. Irawan, “Multiclass Twin Bounded Support Vector Machine Untuk Pengenalan Ucapan”, Seminar Nasional Penelitian, Pendidikan dan Penerapan MIPA, pp.49-58, 2 Juni, 2012

M. Bhasin dan G. P. S. Raghava, “Prediction of CTL epitopes using QM, SVM and ANN techniques”, Vaccine Journal, vol.22, no.23, pp3195-3204, Agustus 2004

W. T. Wong dan S. H. Hsu, “Application of SVM and ANN for image retrieval”, European Journal of Operational Research, vol.173, no.3, pp. 938–950, September 2006

I. Hmeidi, B. Hawashin, dan E. El-Qawasmeh, “Performance of KNN and SVM classifiers on full word Arabic articles”, Advanced Engineering Informatics, vol.22, no.1, pp106-111, Januari 2008

Yushan Qiu, “Towards Prediction of Pancreatic Cancer Using SVM Study Model”, JSM Clinical Oncology And Research, vol2. No.4, Mei 2014

I. T. Utami, “Perbandingan Kinerja Klasifikasi Support Vector Machine (SVM) Dan Regresi Logistik Biner dalam Mengklasifikasikan Ketepatan Waktu Kelulusan Mahasiswa FMIPA UNTAD”, Jurnal Ilmiah Matematika dan Terapan, vol.15, no.2, pp256-267, Desember 2018

Jayadeva, R. Khemchandani, and Suresh Chandra, “Twin Support Vector Machines for Pattern Classification”, IEEE:Transactions on Pattern Analysis and Machine Intelligence, vol.29, no.5, pp 905-910, Mei 2007.

C. Yang and Z. Wu. Study to multi-twin support vector machines and its applications in speaker recognition” in Proc. International Conference On Computational Intelligence And Software Engineering 2009, pp1-4, Dec. 11-13, 2009

W-J. Chen, dkk, “MLTSVM: a novel twin support vector machine to multi-label learning”, Elsevier : Pattern Recognition, vol. 52, pp.61-74 , Oktober 2015

S. Alam, dkk, “Twin SVM-Based Classification of Alzheimer’s Disease Using Complex Dual-Tree Wavelet Principal Coefficients and LDA”, Journal of Healthcare Engineering, vol.2017, pp1-12, Agustus 2017

W. Sadewo, dkk, “Pancreatic Cancer Early Detection Using Twin Support Vector Machine Based on Kernel”, Symmetry, vol.12, no.4, April 2020

Y. Shao, C. Zhang, X. Wang, and N. Deng, “Improvements on Twin Support Vector Machines”, IEEE Transactions on Neural Networks, vol.22, no.6, Mei 2011

R. Dasmasela, B. P. Tomasouw, dan Z. A. Leleury, “Penerapan Metode Support Vector Machine (SVM) Untuk Mendeteksi Penyalahgunaan Narkoba”, PARAMETER : JURNAL MATEMATIKA, STATISTIKA DAN TERAPANNYA, vol.1, no.2, pp93-101, Mei 2021

Published
2021-12-01
How to Cite
[1]
B. Tomasouw and Y. Lesnussa, “DETEKSI PENYALAHGUNAAN NARKOBA DENGAN METODE TWIN BOUNDED SVM”, BAREKENG: J. Math. & App., vol. 15, no. 4, pp. 753-760, Dec. 2021.