TITIK-ANTARA DI DALAM RUANG METRIK DAN RUANG INTERVAL METRIK

  • Mozart W. Talakua Jurusan Matematika FMIPA Universitas Pattimura
Keywords: Between-points, Metric Space, Metric Interval Space

Abstract

A point p in metric space ()dX, is called a between-point of if Xba∈,()()(bpdpadbad,,,+= ). This concept was formulated by Menger in 1928. If all the between-points of a and b is collected in a set, then a and b are that set automaticlly. In the metric space ()dX, and if there are operator in X, hence this interval operator is called metric interval operator. The couple of () is called metric interval space.

Downloads

Download data is not yet available.

References

Bartle, R. G. & Shertbert, D. R (1994). Introduction to Real Analysis. Second Edition. John Wiley & Sons. Inc, New York.
Conway, J.B. (1990) A Course in Functional Analysis. Springer-Verlag, New York
Kreyszig, E. (1978) Intrduction Functional Analysis with Applications. John Wiley and Sons, New York.
Soeparna, D. (2006) Pengantar Analisis Real. Jurusan Matematika FMIPA Universitas Gadjah Mada, Yogyakarta.
Soeparna, D. (2007) Pengantar Analisis Abstrak. Jurusan Matematika FMIPA Universitas Gadjah Mada, Yogyakarta.
Published
2007-12-01
How to Cite
[1]
M. Talakua, “TITIK-ANTARA DI DALAM RUANG METRIK DAN RUANG INTERVAL METRIK”, BAREKENG: J. Math. & App., vol. 1, no. 2, pp. 31-35, Dec. 2007.