MATRIKS PANGKAT DAN KEPERIODIKANNYA DALAM ALJABAR MAX-PLUS
Abstract
Dalam aljabar max-plus telah banyak dipelajari tentang sifat-sifat matriks.Salah satunya adalah keperiodikan suatu matriks yang tidak tereduksi. Telah diketahui pada aljabar maxplus bahwa barisan pangkat k A dalam Aljabar Max-Plus, dengan A adalah matriks persegi yang tidak tereduksi, menjadi periodik setelah waktu terbatas T(A), dan periode akhirï§ sama dengan siklisitas grafkritis dari A. Dalam hubunganini dipelajari masalah komputasi dari matriks persegi yang berukuran nï‚´n yaitu jika diberikan k, hitung periodik pangkat r A dengan r  k(modï§ ) untuk r  T A . Ide utama adalah menggunakan penskalaan similaritas diagonal yang sesuai 1 A X AX ï€ , yang disebut penskalaan visualisasi.
Downloads
References
Papadimitriou, C. H., Steiglitz, K., 1982, Combinatorial Optimization: “Algorithms and Complexityâ€, Prentice Hall, New Jersey,
Heidergott, B. (2006), Max Plus Algebra And Queues, Vrije Universiteit. Department of Econometrics and Operations Research De Boolean 1105, 1081 HV
Amsterdam, The Netherlands. Gavalec, M., “Linear Matrix Period in Max-Plus Algebraâ€, Linear Algebra Appl. 307(2000) 167-182
Butkovic, P., Cuninghame-Green, R. A., “On matrix powers in max-algebraâ€, Linear Algebra Appl.
Subiono. (2009), Aljabar Max-Plus, Institut Teknologi Sepuluh Nopember, Surabaya
Sergeev, S., Schneider, H., Butkovic, P. (2009) “On visualization scaling, subeigenvectors and kleene stars in max algebraâ€, Linear Algebra Appl.
Authors who publish with this Journal agree to the following terms:
- Author retain copyright and grant the journal right of first publication with the work simultaneously licensed under a creative commons attribution license that allow others to share the work within an acknowledgement of the work’s authorship and initial publication of this journal.
- Authors are able to enter into separate, additional contractual arrangement for the non-exclusive distribution of the journal’s published version of the work (e.g. acknowledgement of its initial publication in this journal).
- Authors are permitted and encouraged to post their work online (e.g. in institutional repositories or on their websites) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published works.