BEBERAPA TEOREMA KEKONVERGENAN PADA INTEGRAL RIEMANN

  • Venn Y. I. Ilwaru Jurusan Matematika FMIPA Universitas Pattimura
  • Henry J. Wattimanela Jurusan Matematika FMIPA Universitas Pattimura
  • Mozart W. Talakua Jurusan Matematika FMIPA Universitas Pattimura
Keywords: Riemann Integral, Convergence, Uniform Convergence, Sufficient Condition

Abstract

Riemann Integral is integral concept using the sum of lower Riemann and upper Riemann. The sufficient condition for the function sequence which is R-integralable at a, b is the
limit function also R-integralable at a, b. If function sequence   n f convergence to f at a, b and n f R-integralable for every n, then the sufficient condition that function f also
R-integralable at a, b is   n f uniform convergence to f at a, b. This research studies about sum convergence theorems in Riemann Integral.

Downloads

Download data is not yet available.

References

Bartle, R. G, (1994), Introduction to Real Analysis, John Wiley & Sons, USA
Gordon, R, A., (1994), The Integrals Of Lebesgue, Denjoy, Perron, and Henstock., Graduate Studies In Mathematics 4, Volume 4., American Mathematical Society.,USA.
Hutahaean, E., (1989), Analisis Real II, Penerbit Karunika, Universitas Terbuka, Jakarta.
Jain, P. K. and Gupta, V. P., (1986), Lebesgue Measure and Integration. Wiley Eastern Limited, New Delhi.
Lee, P. Y. (1989). Lanzhou Lectures on Henstock Integration. Series in Real Analysis vol.2. World Scientific, Singapore.
Muslich., (2005), Analisis Real II, Lembaga Pengembangan Pendidikan,Surakarta.
Royden, H, L., (1989), Real Analysis, Third Edition, Macmillan Publishing Company, New York.
Soeparna, D., (2006), Pengantar Analisis Real, Universitas Gajah Mada, Yogyakarta.
Soeparna, D., (2006), Pengantar Analisis Abstrak, Universitas Gajah Mada, Yogyakarta
Published
2018-01-26
How to Cite
[1]
V. Ilwaru, H. Wattimanela, and M. Talakua, “BEBERAPA TEOREMA KEKONVERGENAN PADA INTEGRAL RIEMANN”, BAREKENG, vol. 6, no. 1, pp. 13-18, Jan. 2018.

Most read articles by the same author(s)

1 2 3 4 > >>