KAJIAN STRUKTUR SUPERBIMATRIKS

  • Henry W. M. Patty Jurusan Matematika FMIPA Universitas Pattimura
  • Chevano Bill Pattipeilohy Jurusan Matematika FMIPA Universitas Pattimura
  • Abraham Z. Wattimena Jurusan Matematika FMIPA Universitas Pattimura
Keywords: bimatriks, gabungan, matriks, superbimatriks, supermatriks

Abstract

dimana ð´1 ≠ ð´2 maka ð´1 ∪ ð´2 merupakan superbimatriks. Dengan kata lain perpaduan antara dua himpunan supermatriks disebut sebagai superbimatriks. Diberikan beberapa definisi superbimatriks antara lain yaitu superbimatriks baris dan kolom, superbimatriks persegi dan persegi panjang, semi superbimatriks, quasi superbimatriks, transpose superbimatriks, serta superbimatriks simetri dan diperoleh suatu sifat bahwa jika A = A1 ∪ A2 yang merupakan superbivektor kolom maka AAT merupakan superbimatriks simetri.

Downloads

Download data is not yet available.

References

[1] Anton, Howard. (2000). Dasar-Dasar Aljabar Linear: Jilid 1.
[2] Deligne, P. and Morgan, J.W. (1999) Notes on supersymmetry following Bernstein. Quantum fields and strings; a course for mathematicians, vol. 1, Amer. Math. Soc.
[3] Frank Ayres, JR., Ph.D (1984). Teori Dan Soal-Soal Matriks.
[4] Horst, P. (1963) Matrix Algebra for Social Scientists, Holt.
[5] Jacob Bill (1995) Linear Functions and Matrix Theory.
[6] Varadarajan, V.S (2004) Supersymmetry for mathematicians; an introduction. Couran Lecture Notes. Courant Lecture Notes Series, New York.
[7] W. B. Vasantha Kandasamy dan Florentin Smarandache. (2009). Bimatriks.
[8] W. B. Vasantha Kandasamy dan Florentin Smarandache. (2009). Superbimatrices and Their Generalization
[9] Yost, S.A 1991. Supermatriks models. Interasional journal of modern physicsa vol, 7, no. 24 (1992).
Published
2017-03-01
How to Cite
[1]
H. Patty, C. Pattipeilohy, and A. Wattimena, “KAJIAN STRUKTUR SUPERBIMATRIKS”, BAREKENG: J. Math. & App., vol. 11, no. 1, pp. 75-84, Mar. 2017.