INTEGRAL DELTA DAN SIFAT-SIFATNYA

  • Mozart W. Talakua Jurusan Matematika FMIPA Universitas Pattimura
  • Marlon S. N. van Delsen Jurusan Matematika FMIPA Universitas Pattimura
Keywords: Delta Integral, Riemann Integral,  -Cover Fill,  -Partition

Abstract

Delta integral is the development of Riemann integral. The definition of Delta integral can be develop from definition of  -partition with construction and constructive definition of Riemann integral. A function f : a,b is said to be Riemann integralable on a,b , then it is also Delta integralable. But partition of Delta integral is refine from Riemann integral. So that the value of Delta integral function f on a,b is better with Riemann integral.

Downloads

Download data is not yet available.

References

Gordon, R, A., (1994), The Integrals Of Lebesgue, Denjoy, Perron, and Henstock., Graduate Studies In
Mathematics 4, Volume 4., American Mathematical Society.,USA.
Hutahaean, E., (1989), Analisis Real II, Penerbit Karunika, Universitas Terbuka, Jakarta.
Jain, P. K. and Gupta, V. P., (1986), Lebesgue Measure and Integration. Wiley Eastern Limited, New Delhi.
Royden, H, L., (1989), Real Analysis, Third Edition, Macmillan Publishing Company, New York.
Soeparna, D., (2006), Pengantar Analisis Real, Universitas Gajah Mada, Yogyakarta.
Soeparna, D., (2006), Pengantar Analisis Abstrak, Universitas Gajah Mada, Yogyakarta.
Muslich, (2005), Analisis Real II, Lembaga Pengembangan Pendidikan,Surakarta.
Published
2018-01-30
How to Cite
[1]
M. Talakua and M. van Delsen, “INTEGRAL DELTA DAN SIFAT-SIFATNYA”, BAREKENG, vol. 7, no. 1, pp. 29-30, Jan. 2018.

Most read articles by the same author(s)

1 2 3 > >>