• Mozart W. Talakua Jurusan Matematika FMIPA Universitas Pattimura
  • Stenly J. Nanuru Jurusan Matematika FMIPA Universitas Pattimura
Keywords: Banach Spaces, Hilbert Spaces, Norm Space, Pre-Hilbert Spaces, Representation Riesz


Hilbert space is a very important idea of the Davids Hilbert invention. In 1907, Riesz and Fréchet developed one of the theorem in Hilbert space called the Riesz-Fréchet representation
theorem. This research contains some supporting definitions Banach space, pre-Hilbert spaces, Hilbert spaces, the duality of Banach and Riesz-Fréchet representation theorem. On Riesz-
Fréchet representation theorem will be shown that a continuous linear functional that exist in the Hilbert space is an inner product, in other words, there is no continuous linear functional on a Hilbert space except the inner product.


Download data is not yet available.


Bartle. R.G, Sherbert D.R (2000), Introduction to Real Analysis, Third Edition. John Wiley and Sons, Inc, USA
Conway. J. B. A (1989). Course in Functional Analysis, Second Edition. Springer-Verlag, New York
Devito. C. L (1990). Functional Analysis and Linear Operator Theory. Addison-Wesley publishing Company, New York
Halmos. P. R (1957), Introduction to Hilbert Space and the Theory of Spectral Multiplicity. Second edition, Chelsea, New York
Howard. A (1987). Aljabar Linear Elementer. Erlangga, Jakarta
Kreyszig. E (1978). Introduction Functional Analysis Aplications. John Wiley& Son, New York
Leon, Steven. J (2001). Aljabar Linear dan Aplikasinya. Erlangga, Jakarta
Maddox. I. J (1970). Element of Funcional Analysis. Cambridge Univ. Press, London
Royden. H. L (1989). Real Analysis (third Edition). Macmillan Publishing Company, New York
Rudin, W (1973). Functional Analysis . Second edition. McGraw-Hill, Inc, United State
Zaanen. A. C (1997). Introduction to Operator Theory in Riesz Spaces. Springer-Verlag, New York
Zeidler. E (1995). Applied Functional Analysis, Springer-Verlag, Inc, New York
How to Cite
M. Talakua and S. Nanuru, “TEOREMA REPRESENTASI RIESZ–FRECHET PADA RUANG HILBERT”, BAREKENG, vol. 5, no. 2, pp. 1-8, Dec. 2011.

Most read articles by the same author(s)

1 2 3 > >>