• Yopi A. Lesnussa Jurusan Matematika FMIPA Universitas Pattimura
  • Henry J. Wattimanela Jurusan Matematika FMIPA Universitas Pattimura
  • Mozart W. Talakua Jurusan Matematika FMIPA Universitas Pattimura
Keywords: Measure Space, Lebesgue Measure, Lebesgue Integral, Sifat-sifat Dasar EL-Integral.


EL-Integral is extended of Lebesgue integral, 1 k b EL f d L f d . Lebesgue integral is defined with early arrange measure theory that famous with Lebesgue measure. A function f :a,b is said EL-integrable on a,b , if there exist series interval that no piled up   k I in a,b so that  ,   0 k  a b  I  ,   k f L I for every k and  1 Ik
A L f d  finite. Value A is called value of EL Integral function f on a,b . Extended of Lebesgue integral (EL-Integral) is notated  by :  kbE a k I EL f d f d L f d

     .


Download data is not yet available.


De, Barra, G., (1981), Measure Theory And Integration., Third Avenue., John Wiley and Sons. Inc., New York.
Gordon, R, A., (1994), The Integrals Of Lebesgue, Denjoy, Perron, and Henstock., Graduate Studies In Mathematics 4, Volume 4., American Mathematical Society.,USA.
Hutahaean, E., (1989), Analisis Real II, Penerbit Karunika, Universitas Terbuka, Jakarta.
Jain, P. K. and Gupta, V. P., (1986), Lebesgue Measure and Integration. Wiley Eastern Limited, New Delhi.
Royden, H, L., (1989), Real Analysis, Third Edition, Macmillan Publishing Company, New York.
Rudin, W., (1976), Principles Of Mathematical Analysis, Third Edition, Mc Graw-Hill Book Company., Ltd, Singapore.
Soeparna, D., (1999), An Extension of General Lebesgue Integral, Proceeding of the SEAMS-Gadjah Mada Univercity Conference, Yogyakarta.
Wheeden, R, L and Zygmund, A., (1977), Measure and Integral; An Introduction to real Analysis., Marcel Dekker. Inc., New York.
How to Cite
Y. Lesnussa, H. Wattimanela, and M. Talakua, “SIFAT-SIFAT DASAR PERLUASAN INTEGRAL LEBESGUE”, BAREKENG, vol. 6, no. 2, pp. 37-44, Jan. 2018.

Most read articles by the same author(s)

1 2 3 > >>