SIFAT-SIFAT DASAR MATRIKS SKEW HERMITIAN
Abstract
Matriks didefinisikan sebagai susunan persegi panjang dari elemen-elemen yang diatur dalam baris dan kolom. Matriks dengan elemen-elemen penyusunnya merupakan bilangan kompleks dikenal dengan matriks bilangan kompleks. Salah satu bentuk khusus dari matriks bilangan kompleks adalah matriks Skew Hermitian beserta sifat-sifatnya yang menjadikan matriks tersebut berbeda dengan matriks real. Penelitian ini membahas bagaimana mengetahui bentuk dari matriks Skew Hermitian, serta sifat-sifat aljabar matriks yang berlaku pada matriks Skew Hermitian, dengan tahapan penelitian sebagai berikut: mengubah matriks Hermitian menjadi matriks Skew Hermitian dengan cara mengenakan operasi pergandaan skalar ð‘– (bilangan imajiner) pada matriks Hermitian, menyusun sifat-sifat dasar matriks Skew Hermitian berdasarkan sifat dan definisi dari elemen-elemen penyusunnya. Hasil penelitian menunjukan bahwa sebuah matriks bujursangkar merupakan matriks Skew Hermitian jika setiap elemen-elemen penyusunnya merupakan bilangan kompleks beserta transpose konjugatnya dan matriks tersebut identik dengan negatif matriks transpose konjugatnya. Keterkaitannya dengan bentuk matriks lainnya juga merupakan suatu sifat yang berlaku pada matriks Skew Hermitian.
Downloads
References
Hogben, Leslie, 2007, Handbook of Linear Algebra.
Dalam. Barret, Wayne, (1973), Hermitian and Positive Definite Matrices, Taylor & Francis, Group, USA: 130-131.
Michael,E,O’Sullivan,(2013), Lecture Notes for Math 623 Matrix Analysis.
Paliouras, John D, 1975, Peubah Kompleks untuk Ilmuwan dan Insinyur, Penerbit Erlangga, Jakarta.
Spiegel, Murray R, Teori dan Soal-soal Peubah Kompleks, Seri Buku Schaum, Penerbit Erlangga, Jakarta.
Wolfram, 1999, Hermitian Matrix - from Wolfram MathWorld
Authors who publish with this Journal agree to the following terms:
- Author retain copyright and grant the journal right of first publication with the work simultaneously licensed under a creative commons attribution license that allow others to share the work within an acknowledgement of the work’s authorship and initial publication of this journal.
- Authors are able to enter into separate, additional contractual arrangement for the non-exclusive distribution of the journal’s published version of the work (e.g. acknowledgement of its initial publication in this journal).
- Authors are permitted and encouraged to post their work online (e.g. in institutional repositories or on their websites) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published works.